
[1] 

 

Computer Code Documentation 

Larry C. Young 

Copyright © 2019, Larry C. Young, Tilden Technologies LLC 

January 2020 edition 

Python Code............................................................................................................................3 

Fundamental Calculations ...................................................................................................3 

Example Calculations ..........................................................................................................4 

Utility Functions....................................................................................................................5 

Matlab/Octave .........................................................................................................................5 

Fundamental Calculations ...................................................................................................6 

Example Calculations ..........................................................................................................6 

Fortran 90+ ..............................................................................................................................7 

Fundamental Calculations ...................................................................................................7 

Example Codes.................................................................................................................. 10 

Utility Programs.................................................................................................................. 11 

Linear Algebra Software: ................................................................................................... 12 

C++ Code .............................................................................................................................. 14 

Fundamental Calculations ................................................................................................. 14 

Linear Algebra Software: ................................................................................................... 15 

Excel Dynamic Link Library (OCCdll.dll) ................................................................................ 15 

 

Chapter 2 describes fundamental calculations needed to solve problems with collocation and 

other MWR. To facilitate solution of problems with the described methods, computer source 

code in several languages is provided to perform these fundamental calculations. The 

problems discussed in other chapters are implemented in several examples codes. Referring 

to the symbols defined in Chapter 2, the following fundamental quantities can be calculated:  

1. Base points or roots, x 

2. Quadrature and barycentric weights, W and Wb 

3. Lagrange interpolating polynomials, ℓ(x) 

4. First derivative operators, A and 𝑨̂  

5. Laplacian operator, B 

6. Stiffness matrix, C  

7. Mass matrix for Galerkin or moments methods, M 

8. Jacobi and Legendre transforms, Q 

9. Monomial transform, 𝑸̌ 

10.  Orthogonal polynomials and there derivative 𝑃𝑛
(𝛼,𝛽)

 

11.  Polynomial derivative relationships, Eqs. (2.32), (2.35) and (2.38)  
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The available codes are for use with Python, Matlab/Octave, Fortran 90+, C++ and Excel.  

These codes have been run under Windows, with MinGW and Cygwin. The GNU compilers 

gfortran and g++ have been used. The calculations are performed with native code, except 

Excel uses a dynamic link library. Also, in some languages, large problems can optionally be 

solved faster and more accurately using a library. Since this project is a work in progress, not 

all calculations are available in all languages. The following table lists the functionality 

available for each language, where the symbols refer those used in Chapter 2. 

For each programming system, a simple driver is provided to demonstrate the call syntax, and 

how to compute derivatives, integrals and interpolants. You are strongly encouraged to take 

some time to examine these results before tackling the example problems. You may wish to 

delve into the fundamental calculations discussed in Chapter 2. For example, the fundamental 

calculations can be studied by working with the underlying functions or by modifying the 

demonstration code.  

Tabular results from all the codes are given in tab delimited form, usually implemented with a 

utility program. I frequently pull the tables into Excel for plotting, testing and debugging or into 

Tecplot for plotting. I have not attempted to create graphs using Python or Matlab/Octave. The 

examples are about how to solve differential equations, not how to create graphs. Tutorials on 

how to plot results can be found from many sources. 

The fundamental calculations can also be done directly in Excel using the supplied dynamic 

link library. However, the library is valid only for 32 bit Windows. Online documentation 

suggests 64 bit libraries can be created with the GNU compilers, but my attempts to do so 

have failed and my requests for help remain unanswered (see https://stackoverflow.com).  

The descriptions below use the following common terminology: 

             Software Functionality  

 Symbol Fortran Matlab Python2 C++2 Excel1,2 

Nodes, Weights x, W, Wb ✓ ✓ ✓ ✓ ✓ 

Derivatives 𝑨, 𝑨̂, 𝑩 ✓ ✓ ✓ ✓ ✓ 

Stiffness Matrix C ✓ ✓ ✓ ✓ ✓ 

Mass Matrix M ✓ ✓ ✓ ✓
1 ✓

1 

Polynomial Evaluation 𝑷𝒏
(𝜶,𝜷)

 ✓ ✓ ✓   

Polynomial Derivatives 𝑷𝒏
(𝜶,𝜷) ′

 ✓ ✓ ✓   

Lagrange Interpolation ℓ ✓ ✓ ✓ ✓ ✓ 

Monomial Transform 𝑸̌ ✓ ✓    

Legendre Transform Q ✓     

Jacobi Transform a ✓     

Derivative relationships  ✓ ✓
1 ✓

1   

Notes: 1 limited functionality 
2 Chebyshev not supported 

https://stackoverflow.com/questions/59110111/using-mingw-gcc-to-create-dlls-for-vba-64-bit
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n - number interior points, total points are n + 1 (symmetric) or n + 2 

(nonsymmetric) 

symm – symmetry 0/1 no/yes or true/false 

TType – type of points 0 Gauss, 1 Lobatto, 2 Chebyshev (2nd kind), 3 Radau-right, 

Radau-left 

Geometry or geom – geometry 0,1,2,3 nonsymmetric, symmetric cartesian, 

cylindrical, spherical (note: some older codes use different enumeration)  

Shift – true for shifted interval [0,1], false for [-1,1]  

Xc – collocation points 

Wc – quadrature weights 

Wb – barycentric weights 

Wbfac – normalization factor for barycentric weights 

Ac – first derivative matrix 

An – first derivative of odd quantity (symmetric problem) 

Bc – 2nd derivative or Laplacian matrix 

Cc – stiffness matrix representation, Laplacian 

Mc – mass matrix 

Lc – Lagrange interpolating polynomial 

Func or func – represents a function argument  

Python Code 

Collocation, pseudospectral and other MWR have been implemented in Python. These 

problems have been tested with Python 3.7.4 running under Windows 10. The fundamental 

calculations are implemented in the files jacobi.py and occ.py. In addition to these routines there 

is a utility program for printing arrays and vectors – arrayprint.py and several example codes. 

These programs are briefly described below 

Fundamental Calculations 

Most of the functions needed to implement MWR are contained int the occ.py file. How to use 

these functions are briefly described here, while the testp.py code demonstrates most of the 

functionality. The module contains not only functions, but also some useful enums and strings. 

The strings are useful for labeling the type of points, geometry and symmetry for output. To 

use the module, you must first import it using import occ. Next, an occ object must be 

instantiated, this documentation uses the name oc for the object. After instantiation most 

quantities are obtained using array valued functions. 

oc = occ.OrthColloc(n, TType=Lobatto, Geometry=nonsymmetric, Shift=True) – instantiates an 

occ object, where n is the number of interior points, TType is the type of points - 1, 2, 4 

or 5 for Gauss, Lobatto, Radau-right and Radau-left, respectively. Valid geometries are 0 – 

3 for nonsymmetric, symmetric planar, cylindrical and spherical cases. For 

nonsymmetric problems the interval [-1,1] can be specified by setting Shift=False. 

Xc = oc.Xpoints() –points for the oc object 
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Wc  = oc.WeightQ() –quadrature weights 

Wb = oc.WeightB() –barycentric weights 

Wbfac = oc.WBfac() – scaling factor for barycentric weights 

Ac = oc.Deriv1() – differentiation matrix, 1st derivative 

An = oc.Deriv1odd() – first derivative of an odd function (symmetric problems) 

Bc = oc.Deriv2() – differentiation matrix, 2nd  derivative or Laplacian 

Cc = oc.Stiffness() – stiffness matrix 

Mc = oc.MassMatrix([func,nextra=1]) – mass matrix, for f(x) = 1 if no arguments provided or 

for the function func. When a function is provided, the number of extra quadrature points 

used in the calculations is specified by nextra. 

Lc = oc.Lcoeff(x) – Lagrange interpolating polynomials through the points, evaluated at x. 

Lc = _Lcoefx(x,xi,wb=None) – Lagrange interpolating polynomials. This is a more general 

program which interpolates through points xi rather than the nodes associated with a 

collocation type.  

The occ.py code relies on jacobi.py for the most fundamental calculations, such as quadrature 

nodes and weights. Some of the functions in jacobi.py are of interest in their own right. The 

code can use a shared or dynamic link library created from the Fortran 90 code. The library 

and code to create it are in the lib subdirectory. Use of the library is purely optional, but should 

be faster and more accurate for large n. Use of the library is controlled by variable NumLib. 

The library is not used for n < NumLib. The library is provided for use with Windows 10, but for 

other systems it can easily be created using the scripts and code in the lib directory.  

The polytest.py code demonstrates some of the functionality of jacobi.py. If it is first imported 

using import jacobi as jp, some of the calculations available are: 

ar = jp.jac_reccoef(n,abeta=[0,0],Monic=False,Shift=False) – returns the 4 x n array containing 

the recursion coefficients. If Monic=True, rows 0 and 1 contain the recursion coefficients, 

Eq. (2.12) and row 2 is the leading coefficient 𝜌𝑘
(𝛼,𝛽)

 in the conventional form, Eq. (2.15). 

If Monic=False, the first 3 rows are the recursion coefficient, Eq. (2.16). Row 3 always 

contains 𝜁𝑘
(𝛼,𝛽)

 of Eq. (2.7). If Shift=True, the values are for the shifted polynomials. 

p = jp.jac_poly_recurrent(x,n,abeta=[0,0],nd=0,n0=0,Monic=False,Shift=False) – returns an (n0 + 

nd + 1) x (x.size) array containing values for the polynomials and derivatives at x. 

Polynomials Pn-n0 thru Pn are contained in the first n0 + 1 rows, while derivatives are 

contained in the last nd rows. 

w,wbfac = jp.jac_quad(n,abeta=[0,0],geom=0) – returns quadrature nodes and weights. w is 4 

x (n+2) for nonsymmetric problems (geom = 0) or 4 x (n+1) for symmetric problems. The 

respective rows are Xc, arccos(Xc), Wb and Wc. The barycentric weights are normalized, 

where wbfac is the normalization factor. 

Example Calculations  
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The first two codes use jacobi.py and occ.py to perform some of the fundamental calculations: 

polytest.py – demonstrates some fundamental polynomial calculation in jacobi.py. 

testp.py – test code showing how to obtain and use the basic data needed to solve 

problems 

ex01.py – first example, catalyst pellet problem with linear source and variable coefficient. 

The problem is solved twice: (1) by collocation and (2) by the moments or Galerkin 

method. 

ex01s.py – first example problem, catalyst pellet problem, nonlinear symmetric problems. 

ex04ff.py – falling film problem from chapter 4, analytical continuous solution in z. 

ex04ffs.py – falling film problem from chapter 4, solved using a variety of stepping methods 

in z. 

Utility Functions 

A routine for easily creating tabular output is included with the arrayprint.py code. The output is 

tab delimited so the values can easily be imported by a spreadsheet for further analysis or 

plotting. For this documentation, we assume the module is imported using import arrayprint as 

ap. The following functions are provided. 

ap.fopen(fname) – opens a file with the given name. 

ap.fclose() – closes the file 

file = ap.file() – gives file handle for use with the print function 

ap.vectorprint(title, value, nl=20, fmtf=None) – print a one-dimensional array. title is a string 

printed. nl specifies a maximum number of values per line. fmtf specifies a format string. 

ap.arrayprint(title, a0, a1=None, a2=None, a3=None, fmtf=None) - title is a string printed. a0, 

a1, a2 and a3 are one or two dimensional arrays which are tabulated. fmtf specifies a 

format string. 

Matlab/Octave 

The Matlab/Octave code is organized with the main codes in one directory and the functions 

used in subdirectory mn. Originally, Matlab/Octave was supported by creation of Matlab 

executable (.mex) files from the C++ code for fundamental calculations. This approach 

appears not to be portable, since it failed after installing Cygwin and Octave on a new 

computer. For this reason, all the calculations are now done with native Matlab code. Some 

improvements to the node and weight calculations have not yet been implemented. However, I 

believe this native code should be reasonably efficient and much more portable. 

Although these codes have not been tested under Matlab, I have tried to make them 

compatible by avoiding Octave specific extensions. Unfortunately, Octave does not have an 

option to assist with compatibility. I would appreciate hearing from anyone that tries them on 

Matlab. 
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Fundamental Calculations 

Several functions are provided to perform the fundamental calculations. A simple 

driver is provided  to demonstrate the call syntax and the results in tab delimited 

tables. I frequently pull these tables in Excel for  

OCCdefs.m – contains named constants for ptyp, geom and sym and string 

designations useful for program output   

[xc,wc,Ac] = OCnonsym(n,typ) – nonsymmetric points, weights and derivative 

operator given n and typ 1 - 5 (Gauss, Lobatto, Chebyshev, Radau right/left)  

[xc,wc,Ac,An] = OCsym(n,typ,geom) – symmetric base points, weights and derivative 

operators (even and odd) given  n, typ (1 Gauss, 2 Lobatto, 3 Chebyshev)  and 

geom = 0,1,2 for planar, cylindrical and spherical geometry 

[Bc,Cc] = OCBCcoef(wc,Ac,An,symm) – 2nd derivative Laplacian and stiffness matrix 

given weights, first derivative matrices and symmetry (0/1 no/yes) 

Dc = MassMatrix(xc,[@func,nextra]) – mass matrix, function handle may be supplied 

as an option, defaults to f(x) = 1.  

Lc = Lcoef(x,xc) – returns Lagrange interpolating polynomials evaluated at x (scalar 

or array), xc are the interpolation points, result is size(x) x size(xc) 

Q = Lpoly(xc,symm) – Lagrange interpolating polynomial as monomials ∑ 𝑄𝑖𝑗𝑥𝑗−1  

Example Calculations 

testm.m – driver program to demonstrate how to perform fundamental calculations 

ex1_non.m – simple code uses Orthogonal Collocation to solve boundary value 

problem, diffusion with nonlinear source and variable coefficients, Dirichlet 

boundary conditions. Creates output file ex1n.dat. 

ex1_nonx.m – extended solution of diffusion problem with linear source and variable 

coefficients with Dirichlet boundary conditions. The problem is solved 4 times: (1) 

conventional formulation (nonsymmetric matrix). (2) weak formulation, (3) 

Galerkin/Moments with interpolated source, (4) full Galerkin/Moments. Galerkin 

and Moments calculations occur when Lobatto and Gauss points are selected, 

respectively. 

ex2_sym.m – symmetric diffusion with nonlinear source, third kind boundary 

conditions, solved with Gauss, Lobatto and Chebyshev points. Planar, cylindrical or 

spherical geometry can be selected. 

ex3_ax.m – solves problem for chemical reactor with axial dispersion, Ch. 3.2. The 

three methods of solution described in the text are coded.  

ex4_ff.m – solves falling liquid film problem, continuous solution in z via eigenvalues 

and eigenvectors 
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ex4_ffs.m – solves falling film problem with numerical stepping methods in z. A choice 

of 12 different solution procedures are coded. 

exheatflux.m – solves the first example conduction problem described in section 1.3.  

Fortran 90+ 

The Fortran code is organized to have the source code in a directory and makefiles, object 

files, module files and executables in the o subdirectory. A makefile is included to build the 

executables and is run using the mk script. For example to build the test program from the 

prompt in the upper directory, type: 

 o/mk testf 

Then to execute the test program type: 

 o/testf 

Most of the examples require that some data be supplied. If you get tired of supplying the data 

manually, you can modify the program or put the data in a file and execute the program using 

redirection by typing, for example: 

 o/testf < testin.dat  

where the input data is stored in a file named testin.dat. This is an archaic way to run a 

program, but since we want to solve differential equations not build user interfaces, it is the 

best we can do. 

All of the codes use an include file defs.fi which contains some global data. For example, the 

precision of the calculations is set the correct way, using a single parameter float. Also, many 

of the files have a Debug parameter which causes some of the intermediate calculations to be 

printed when Debug > 0, larger values give more information.  

The Fortran code has been completely reorganized from previous releases. It is now more 

accurate and efficient and is in a much easier and the correct object-oriented formulation. 

Unfortunately, it is not backward compatible, but it is easy to convert to the new format. The 

fundamental calculations of Chapter 2 are implemented with three files, each containing one 

module. They are OrthPoly.f90, OrthCheb.f90 and OCC.f90 and they contain modules: Orth_Poly, 

Orth_Cheb and OrthogonalColloc, respectively. Orth_Poly and Orth_Cheb implement the most 

fundamental calculations for Jacobi and Chebyshev polynomials. These modules are used by 

OrthogonalColloc.  Only a few of these most fundamental procedures are documented, but 

several example codes illustrate the functionality.  

Fundamental Calculations 

To solve problems, one normally interfaces only with OrthogonalColloc. One begins by first 

defining and initializing a ColDataType object, called OC in this documentation. Once initialized 

the various quantities needed can be obtained using array valued functions. The code testf.f90 

demonstrates how to obtain and use most quantities of interest. The following data and 

functions are contained in the OrthogonalColloc module: 
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General, Gauss, Lobatto, Chebyshev, RadauR, RadauL,Chebyshev1 – values (0 - 6) for 

point types types 

Nonsymmetric, Planar, Cylindrical, Spherical – values (0 - 3) for geometry and 

symmetry. 

TxtType(0:6) –  text strings for point types 

TxtGeom(0:3) – text strings for geometry  

TxtSym(0:1) – text strings for symmetry 

Initialize(OC,n,[TType],[Geometry],[Shift]) – initializes OC object for n interior points. 

TType, Geometry and Shift are optional. TType = 1 to 5, defaults to 2 (Lobatto), 

Geometry  = 0 to 3, defaults to 0 (nonsymmetric), Shift = true (default) for interval 

[0,1], false for [-1,1], nonsymmetric problems. 

Initialize(OC,Xc,[Geometry],[Shift]) – alternative initialization for general problems, 

where the points, Xc, are supplied. Geometry and Shift are the same as above.  

CollocCoef(Xc,Wc,Ac,[Bc],[Cc]) – routine to get all the values at once, Bc and Cc are 

optional, All arrays have extent n + 2 (nonsymmetric) or n + 1 (symmetric). 

Xc = Xpoints(OC) - returns quadrature points, given number interior points 

Wc = WeightQ(OC) - returns quadrature weights  

Wb = WeightQ(OC,Wbfac) - returns barycentric weights and normalization factor 

Ac = Deriv1(OC) - returns first derivative matrix 

An = DerivOdd(OC) - returns first derivative matrix for an odd quantity in a symmetric 

problem 

Bc = Deriv2(OC) - returns second derivative or Laplacian matrix 

Cc = Stiffness(OC) – returns stiffness matrix 

Mc = MassMat(OC,[fx]) - mass matrix, where fx is optional. If fx is absent, f(x) = 1 is 

assumed. If fx is an array of function values at Xc, interpolation of f(x) is used.  

Mc = MassMat(OC,Func,[nqx]) – alternate function for Galerkin or Moments mass 

matrix. Func is the name of a function to use in the calculation. nqx specifies n + 

nqx interior quadrature points will be used in the calculation. nqx = 1 is the default 

Lc = Lcoeff(x,OC) – Lagrange polynomials through the points Xc of OC evaluated at x, 

result is shape(size(x),size(Xc)) if x is a vector or shape(Xc) if x is scalar 

Lc = Lcoeff(x,xc) – alternate function for Lagrange polynomials evaluated at x. The 

interpolation points are, xc, result is shape(size(x),size(xc)) if x is a vector or 

shape(Xc) if x is scalar 

y = Interp(x,OC,yc) – given the values yc at the points of OC, interpolates the values y 

at x. x may be a scalar or an array. y has the same size as x. 

Q = Lpoly(xc) – Lagrange interpolating polynomial through xc as monomials, where 

𝐿𝑖(𝑥) = ∑ 𝑄𝑖𝑗𝑥𝑗−1  
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The Orth_Poly module contains code for the most fundamental calculations with Jacobi 

polynomials. Many are not needed to solve problems with a nodal formulation, but 

provides some functionality needed for modal formulations. Optional arguments 

common to several functions are:  

abeta = array of two values containing α and β, the Jacobi polynomial weight 

parameters, defaults to (/0,0/), i.e. Legendre polynomials  

arec – (n-1) x 4 array of recurrence coefficients, if not supplied values are calculated 

using abeta.  

Monic - specifies monic polynomial, defaults to .false.  

Shift - specifies shifted polynomial, defaults to .false. 

Some functions in the Orth_Poly module are: 

ar = x_Jacobi (n,[abeta],[Monic],[Shift]) – calculates recurrence relations for Jacobi 

polynomials. ar(0:n-1,1:4) values for polynomials, where if Monic is true ar(:,1:2) 

are the recurrence coefficients, Eq. (2.11) and ar(:,3) are coefficients of the 

leading terms, Eq. (2.14); if not Monic is false ar(:,1:3) are the recurrence 

coefficients, Eq. (2.16). ar(:,4) are the integrals of the squared polynomials, i.e. 

𝜁𝑘
(𝛼,𝛽)

, Eq. (2.7). If Shift is true the values are for the shifted polynomials.  

d = d_Jacobi(n,[abeta],[Monic],[Shift]) – d(0:n) are the integrals of the squared 

polynomials, 𝜁𝑘
(𝛼,𝛽)

. These are the same ar(:,4) above. 

p = Legendre (x,n,nder) – p(:,0:n,0:nder) are 0 to nth Legendre polynomials and their 

derivatives through nder at vector of x values. 

p = Jacobi_All(x,n,[abeta],[arec],[Monic],[Shift]) – p(:,0:n) are Jacobi polynomials 0 to n at 

vector of x values. abeta optionally contains the two weight parameters. arec(0:n-1,4) is 

optional array of recurrence coefficients from x_Jacobi. abeta is not used if arec is 

supplied. 

u = Jacobi_Series(a,x,[abeta],[arec],[Monic],[Shift]) – values of discrete Jacobi series at 

vector of x values, i.e. 𝑢(𝑥) =  ∑ 𝑎𝑘𝑝𝑘(𝑥)𝑛
𝑘=0 , n = size(a) - 1. 

c = Jacobi_Deriv1(n,[abeta],[Monic],[Shift]) – returns 3 coefficients of Eq. (2.35) 

c = Jacobi_Deriv2(n,[abeta],[nder],[Monic],[Shift]) – returns 3 coefficients of Eq. (2.33) 

for derivative nder 

d = Jacobi_Deriv(n,[abeta],[ar],[Monic],[Shift]) – d(0:n-1,0:n-1) first derivatives for 0 thru 

(n-1)th Jacobi polynomials, type is a real(float). Eq. (2.38). i.e. 𝑃𝑛
(𝛼,𝛽)′

=

 ∑ 𝑑𝑛𝑘
𝑛−1
𝑘=0 𝑃𝑘

(𝛼,𝛽)
. 

d = Legendre_Deriv(n,nder) – integer coefficients 0 to n for derivatives of nth Legendre 

polynomials, nder = 1 and 2 for 1st and 2nd derivative, Eqs. (2.44) and (2.45), nder 
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= 3 for difference 𝑃𝑘+2
′′ − 𝑃𝑘

′′. This expresses the derivatives in terms of the 

undifferentiated polynomials, e.g. for a first derivative 𝑃𝑛
′ = ∑ 𝑑𝑘𝑃𝑘(𝑥)𝑛−1

𝑘=0   

Q = LegendreTransform(Xc,Wc,ityp,[Shift]) – calculate transform from nodal values to 

Legendre coefficients. Xc and Wc are the nodes and weights for either Gaussian 

(ityp = 1) or Lobatto (ityp = 2) quadrature. Uses Eq. (2.140) for Lobatto case, 

while for the Gauss case the procedure ending with Eq. (2.148) is used. 

a =Jacobi_Transform(n,t,g,Func,{Shift}) – calculates nth degree Jacobi transform of 

function Func for points of type t and geometry g . Uses Eq. (2.138). 

af = Jacobi_Scale_Sym(n,[abeta]) – calculates scaling factors, Eqs. (2.19) and (2.21), 

for shortcut polynomials or symmetric problems where abs(abeta(2)) = 0.5. from 

shortcut polynomials of degree n to full polynomials of degree 2n + abeta(2) + ½. 

abeta is optional, but since it defaults to (/0,0/) the result is af = 1 

Example Codes 

The example codes create one or up to three output files. For example, if you 

designate a root name of ex, file ex.dat and possibly ex2.dat and ex.log may be 

created. Several of the examples contain a parameter Debug  to control output of 

intermediate calculations, which may create the third file ex.log.  

testf.f90 –demonstrates calls to most of the functions in OrthoganolColloc and use of the 

results for integration and differentiation. 

PolyTest.f90 – demonstrates some functions of the Orth_Poly module and demonstrates some 

methods for calculating polynomial roots. 

PolyTran.f90 – demonstrates Orth_Poly functions for Jacobi transforms of several functions 

and how to calculate modal coefficients from nodal values 

PolyBVP.f90 – demonstrates use of Orth_Poly functions to solve boundary value problems, 

section 3.1.7. Also demonstrates nodal/modal transforms and functions Legendre_Deriv 

and Jacobi_Deriv. 

Ex01.f90 – solves constant or variable coefficient diffusion problem of section 3.1 

with first order source by (1) conventional formulation with boundary collocation, 

(2) weak formulation with natural boundary condition, (3) Galerkin/Moments 

with interpolated source, (4) full Galerkin/Moments. Galerkin and Moments 

calculations occur when Lobatto and Gauss points are selected, respectively. 

Can be run interactively or with supplied data, e.g. o/ex01 < o/x01in.dat. 

Ex01ex.f90 – extended version of Ex01.f90. This version calculates errors and 

transforms of residual functions (see section 3.1.6) 

Ex01s.f90 – solves diffusion with nonlinear source Eq. (3.35) with rate Eq. (3.37) for 

symmetric problems in planar, cylindrical or spherical geometry. Set up to loop 

over a range of n and/or φ.  φ can increment backwards or forward to follow 
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upper and lower solutions. Parameters Conventional, Bcolloc and Generalized set 

within the code respectively govern the use conventional or weak formulation, 

boundary collocation, and whether supplied Thiele parameters are φ or 

generalized parameter φ*. A data file is included, so it can be run interactively 

or by typing o/ex01s < o/x01sin.dat. 

Ex01sg.f90 – a more complex version of Ex01s.f90. This version offers solution by 

collocation or Galerkin methods based on parameter method. It also calculates 

transforms of the residual function to produce the τ coefficients of Eq. (3.56) 

Ex02ax.f90 – solves the boundary value problem of section 3.2 for a chemical 

reactor with axial dispersion. The three methods discussed in the text are 

coded. File o/x02in.dat contains data which can be used in place of interactive 

execution, i.e. o/ex02ax < o/x02in.dat. This code creates two or three output 

files. If you specify the file name ex you will get files ex.dat and ex2.dat. If Debug 

> 0 a file ex.log is also created. This code is setup to treat output from a 

previous run as an “exact” solution for n = 99 Lobatto points from file 

o/ex02axL99.dat. If it is accidentally deleted, just run the program again to 

recreate the data.  

Ex04ff.f90 – solution of falling liquid film problem by Orthogonal Collocation, 

continuous in z by eigenvalues and eigenvectors, section 4.1.1.  The two output 

files contain average y, flux and Sh, and their errors vs z, and the solutions yi(z). 

The values and errors for the first 10 eigenvalues and coefficients are also 

listed. 

Ex04ffg.f90 – solution of falling liquid film problem by the Galerkin Method, 

continuous in z by eigenvalues and eigenvectors, section 4.1.1. This code is 

like the collocation method code, but there are some interesting experimental 

calculations for the initial conditions. 

Ex04ffs.f90 – solution of the falling liquid film problem with stepping methods of 

section 4.1.2. The code implements all the methods discussed in the 

monograph. The DIRK methods are implemented using a general framework, 

so others can be implemented by supplying the Butcher tableau. It creates two 

output files.  

Utility Programs 

ArrayPrint.f90 – the Array_Print module contains code to simplify output of tabular 

results. There is a short learning curve to use this module, but it can save a huge 

amount of time (which is the reason it was coded). If you look through the 

example codes, you will find many different uses of these routines. All routines 

are organized as follows: 

title – optional string, which is printed above the data. 
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data – a minimum of 1, maximum 4 array or vector quantities 

fmtx – an optional format string 

flog – is an optional logical file designator output unit used is: iout if not 

 supplied, ilog if true and iout2 if false (units defined in defs.fi) 

call OpenFile(name,[ext],[append]) opens a file name.ext where name is the root 

and ext is an optional 3 character extension. If not supplied, an extension of 

“dat” is used. If supplied, append is appended to the root name. The unit 

opened is: iout if the extension is “dat” (including if not supplied), ilog if ext = 

“log”, iout2 is opened if another extension is supplied or an append is 

supplied. 

call VectorPrint(title,v1,v2,v3,v4,fmtx,flog) – to print one or more vectors (of type 

integer or float). Only v1 is required. v2, v3 and v4 are optional additional 

vectors to be printed after v1.  

call ArrayPrint(title,i1,i2,i3,i4,fmtx,flog) – to print one or more arrays of type 

integer. i1 is required, all others are optional.  

call ArrayPrint(title,a1,a2,a3,a4,fmtx,flog) – an overloaded routine to print a tab 

delimited table of one or more arrays or vectors of type float (or integers if all 

are arrays). Supply any combination of arrays and vectors. The number of 

rows printed is the smallest of the first dimensions. The number of columns 

printed is the total of the second dimensions (1 for a vector). For example if 

you have declared: 

  Real(float) :: x(20), a(5,5),r(5) 

call ArrayPrint(‘Output:’,x,a,r) - 5 rows by 7 columns printed. x(6:20) not 

printed. 

  The gyrations required to accomplish this shows some of the stupidity of 

Fortran 90. Why can’t it treat a vector A(5) like an array A(5,1). Instead, I have 

set up numerous different routines and not covered all the possible 

combinations. Please enlighten me if there is an easier way to accomplish 

this task. 

Linear Algebra Software: 

The code relies on a combination of LAPack and non-LAPack routines for 

performing linear algebra. The routines are packaged into modules which provides 

a modern interface which takes care of work storage allocation and other 

bookkeeping. This approach makes them much easier to use.  
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If you do not have LAPack installed on your computer, you can still work all the 

examples, but you may have to make minor modifications to the code. The routine 

that rely on LAPack are deleted from LUSolveX.f90 any calls to those routines should 

be changed, e.g. substitute function LUSolveC for LUSolve. For the eigenvalue 

calculations, the relevant LAPack routines are included in file EigenLA.f90, so the 

affected examples can be run by compiling and linking this file instead of the 

LAPack library. 

LUSolve.f90 – contains module LUSolvers with the following public routines for 

solving systems of linear equations as follows: 

LAPack routines: 

X = LUSolve(A,b,[ipivot]) – solve Ax = b, ipivot is optional integer pivot array of 

size(x) uses LAPack DGETRF and DGETRS 

call LUFactr(A,ipivot) – calculate LU factors of A, ipivot is pivot array of size(x), 

uses LAPack DGETRF 

X = LUSubst(A,b,ipivot) – uses LU factors and ipivot from LUFactr to solve Ax =  

b, uses LAPack DGETRS  

call LUInvert(A) – invert A, uses LApack DGETRF and DGETRI 

LUSolveSym, LUFactrSym, LUSubstSym, and LUInvertSym – are just like the four 

routines above, but work on symmetric matrix problems. Works with the full 

matrix, i.e. no compact storage scheme is used. No ipivot is needed or used 

with these routines. Uses LAPack DPOTRF, DPOTRS, and DPOTRI. 

LUSolveSB, LUFactrSB, LUSubstSB, and LUInvertSB – are just like the four routines 

above, but work on symmetric banded matrix problems. Only the diagonal 

and lower bands are supplied. No ipivot is needed or used with these 

routines. Uses LAPack DPBTRF, DPBTRS and DPBTRI. 

 Non-LAPack routines: 

X = LUSolveC(A,b) – solve Ax = b, where b can be a single right-hand-side or an 

array of right-hand-sides. Uses non-LAPack routine implementing the Crout 

algorithm. No pivoting is used. 

call LUFactrC(A) – calculate LU factors of A using Crout algorithm 

X = LUSubstC(A,b) – uses A containing the LU factors from LUFactrC to solve Ax =  

b 

LUSolveSq, LUFactrSq and LUSubstSq – are identical to the Crout routines above, 

but are for symmetric problems using full matrix storage and can use only 

one right-hand-side. Uses the square root method to produce LLT factors of 

the matrix.  
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LUSolveLDL, LUFactrLDL and LUSubstLDL – are identical to the Crout routines 

above, but are for symmetric problems using full matrix storage and can use 

only one right-hand-side. Factors the matrix into LDLT form. This should be 

the most efficient code for symmetric problems. 

Eigen.f90 – contains module EigenValue with the following routines for eigenvalue 

calculations as follows: 

w = EigenVal(A,[VR],[VL]) – for a nonsymmetric matrix A, solve for the 

eigenvalues and optionally the left, VL, and/or right, VR, eigenvectors. The 

real and imaginary parts of the eigenvalues are in an array w(:,2). Uses 

LAPack routine DGEEV. Sorts the eigenvalues and eigenvectors from small 

to large. 

w = EigenValGen(A,B, [VR],[VL]) – calculates the eigenvalues and optionally the 

left and right eigenvectors for a generalized nonsymmetric matrix problem 

Avr = λBvr. Uses LAPack routine DGGEV. 

w = EigenValSym(A,B,[v],[typ]) – calculates the eigenvalues and optionally the 

eigenvectors for a general symmetric matrix problem. A is symmetric and B 

is symmetric positive definite. The configuration is designated by the value 

of optional typ (default = 1): (1) Av = λBv, (2) ABv = λv, or (3) BAv = λv. Uses 

LAPack routine DSYGV. 

w = EigenValTriSym(AD,AS) – calculates the eigenvalues of a real symmetric 

tridiagonal matrix, where AD and AS are the diagonal and subdiagonal of the 

matrix. Uses LAPack routine DSTEQR. 

C++ Code  

occtest.cpp – code which sets up an Orthcc class and calls most of the class 

functions. 

Fundamental Calculations 

occ.h, occ.cpp – class Orthcc contains public functions. Definitions:  Gauss, Lobatto, 

Planar, Cylindrical, Spherical, Symmetric, Nonsymmetric - const values useful for 

occ_set 

occ_set(symm,typ,geom) – set symmetry (0/1 no/yes), type (1 Gauss,  2 Lobatto) and 

geometry(0/1/2 planar/cylindrical/spherical), can be done in constructor also 

quadrature(x,w,n) – calculate quadrature points and weights for n interior points 

Acoeff(A,x,n) – calculate first derivative operator given x and n 

Anonsym(An,A,x) – calculate first derivative operator (odd) given A and x 

Bcoeff(B,A,x) – calculate second derivative operator given A and x 

Ccoeff(C,A,x,w) – symmetric second derivative, given A, x and w 
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MassMat(D,x,w,n) – mass matrix given x, w and n 

Lcoeff(Li,x,xi,nt) – Li are the Lagrange interpolating polynomials through x evaluated 

at xi, nt size(x), xi is scalar. 

LcoeffN(L,x,xi,nt,ni) – L is a 2D array of the Lagrange interpolating polynomials 

through x evaluated at array of points xi, nt is size(x) and ni is size(xi) 

Array.h, Array.cpp – All arrays in bold are type Array2D. A simple 2D array class. It 

also contains linear solver routines 

Array() – default constructor, zero sized array 

Array(n,m) – constructs n x m array 

~Array() – destructor 

void ArraySet(n,m) – resets to n x m array 

void ArrayChk(const char *Aname) – for checking allocation status 

Linear Algebra Software: 

int LUSolveA(double *b) - solves linear equations with rhs b 

int LUFactr() – factors matrix into LU form 

int LUSubst(double *b) – solves linear equations with factored matrix and rhs b 

Note: see note above (Fortran) stating the shape of the various arrays. 

 

Excel Dynamic Link Library (OCCdll.dll) 

The dynamic link library, OCCdll.dll, for use with Excel was created on a 32 bit machine, and 

has not yet been updated to 64 bits. You must put OCCdll.dll where it can be found by Excel 

(either in the "current" directory or better yet somewhere on the path). 

Test.xls – simple spreadsheet which calls the various functions to get points, weights, 

derivatives and Lagrange polynomials. 

OCC_Setup(s,t,g) – set symmetry, type and geometry 

OCC_Points(nt) – returns points given total number 

OCC_Weights(xc) – returns quadrature weights given points 

OCC_Acoef(xc) – first derivative operator 

OCC_AcoefN(xc) – first derivative operator for odd function 

OCC_Bcoef(xc) – 2nd derivative operator 

OCC_Ccoef(xc) – 2nd derivative operator symmetric form 

OCC_Dcoef(xc) – mass matrix 
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OCC_Linterp(x,xc) – Lagrange interpolating polynomials evaluated at x 

OCCdll.bas – visual basic code to interface with OCCdll.dll. This Visual basic code is needed 

to interface with the dynamic link library.  This code is embedded in the Excel 

spreadsheets.  It is already installed in test.xls.  For a new spreadsheet, started from 

scratch, you will have to add this visual basic code. 

LUFactor.bas – VBA code to interface with OCCdll.dll for solving systems of linear equations. 

Ex01G.xls - solves the nonsymmetric diffusion/reaction example with Gauss points 

Ex01L.xls - solves the nonsymmetric diffusion/reaction example with Lobatto points 

Note: Excel has trouble keeping the spreadsheet up to date.  Press ctrl-alt-F9 to force an 

update.  

 

 

 


