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Preface  
After having been involved during the early days of orthogonal collocation [Young and 

Finlayson, (1973, 1976), Young (1977, 1981)], I had reason to use it again more recently.  A 

review of the last 50 years revealed that some aspects of the method appear to have never 

been explained clearly or never explained at all.  If you look at posts on various internet sites, 

you reach the conclusion that much confusion exists amongst students and practitioners. I 

eventually published a more recent article to address the confusion and demonstrate correct 

formulations [Young 2019]. The present monograph extends that effort and further 

demonstrates proper implementation with many examples in a variety of computer languages. 

The term Method of Weighted Residual (MWR) covers many methods for the approximate 

solution of differential equations. The name can be traced to comments by Richard Courant at 

the First International Congress on Applied Mechanics in 1924. In more recent years, the 

name has been almost supplanted by the newer name Spectral Methods. Fundamentally, 

there is no difference. MWR is not a specific method, but a category of methods based on the 

same principal. It is a flexible framework for developing approximations. The approximate 

solution is developed from an assumed trial solution or assumed form which contains a finite 

number of adjustable parameters. The assumed form is usually a linear series of trial or basis 

functions which are the first few members of a complete set. The method gets its name from 

the procedure used to determine the free parameters. The assumed solution is substituted into 

the differential equation to form the residual or error function. The parameters are determined 

by setting weighted averages of the residual to zero. This framework provides a great deal of 

flexibility in the selection of the trial solution and the weighting scheme. Many specific methods 

are fundamentally MWR. Some examples are: spectral method, pseudospectral method, 

orthogonal collocation, differential quadrature, finite element method and spectral element 

method.  

This monograph is focused on the application of collocation-like (Orthogonal Collocation, 

Pseudospectral, Differential Quadrature) methods and other Methods of Weighted Residuals 

(MWR) to solve engineering problems. The problems are drawn mostly from the authors 

experience in heat and mass transfer, chemical reaction engineering, porous media flow and 

to a lesser extent fluid mechanics and mechanical vibration problems. Trial function 

representations are applied to problems in one or more spatial coordinates, such as in a 

boundary value problem. Both global approximations and finite element trial functions are 

used. Nonperiodic problems in finite domains are considered, but other cases are addressed in 

the many references provided. Computer codes are provided for the examples in 

Matlab/Octave, Python, Excel, Fortran and C++. 

The monograph is written for anyone that understands mathematics at a level typical of an 

undergraduate engineering education, e.g. differential equations and some basic numerical 

methods. The text will be useful if you have that type of background and want to learn about 

the MWR or finite elements in a general way - not only the mathematics but also how to 

implement them in computer code. I assume you can start with an engineering differential 
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equation and convert it to a dimensionless form, recognizing what the terms mean. A 

knowledge of the solution of linear algebraic systems by Gaussian elimination or LU 

factorization is also assumed together with a basic understanding of eigenvalues and 

eigenvectors. For nonlinear problems, some knowledge of Newton-Raphson and other iterative 

methods is helpful. Many of these topics are briefly described in the text, so the text and 

computer code along with an outside reference source may be adequate to achieve 

understanding. Fully working codes are provided, so the reader does not need to implement 

the basic calculations, but if you understand the fundamentals you will be able to follow how 

alternative solution methods are evaluated in order to pick a good method.  

Some goals of the monograph are: 

1. improved understanding of the MWR - how to formulate them correctly (including 

boundary conditions) and how different methods are related 

2. demonstrate clean and modern computer implementation of MWR for a variety of 

problems 

3. explain how to analyze alternative solution schemes in order to pick an effective method 

4. to provide code and a framework for the reader to experiment with and build upon 

5. reduce confusion by using logical and consistent terminology and by highlighting 

equivalent methods which go by different names 

One area of confusion is the implementation of boundary conditions, especially those involving 

derivatives. These are called natural boundary conditions in the Rayleigh-Ritz variational 

method and its generalization, the Galerkin method. Through the examples, I demonstrate the 

correct implementation of boundary conditions, and the consequences if they are not properly 

implemented. 

One caveat about the codes is that they do not produce graphs or pretty pictures. I find most 

built in graphics to be clunky. I always want to compare this calculation with that one on the 

same graph and that requires too much effort. Since there is no way for me to predict what you 

(or I) want to look at, I prefer to print the results in text files that are tab delimited, so they can 

easily be exported to a spreadsheet like Excel or graphics program like Tecplot®. 

Since I am not a mathematician or an academician, you may ask - What does this monograph 

offer? As an engineer, I have always taken a hands-on approach, so that is the approach 

taken here. Most engineers complain they have difficulty grasping mathematics, because it is 

often divorced from their reality. What better way to learn, than by applying the methods to 

solve problems? Theory is introduced when it helps to improve understanding. I have always 

felt that finite element methods are best learned after you are familiar with global methods - 

using simple polynomials of one type or another. That is the approach taken here, i.e. global 

methods first, then finite element methods. The easiest methods to understand are collocation 

methods. When correctly implemented, they are usually the most efficient methods, so they 

too are emphasized. 

Most engineers are notoriously terrible coders. Could it have something to do with examples of 

engineering code they’ve learned from? I will not claim to be the best coder in the world, but I 
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do have a system gained from considerable experience. Most of my knowledge of 

programming is self-taught through reading, self-study, the occasional short course, but mostly 

experimentation. I’ve found one of the best ways to learn is to look at your own code after six 

months or a year. Can you read it? Or, do you ask, “What the heck was I thinking?” When I 

started developing my most successful code in the mid-1980s I organized it differently from 

other codes for the same type of problem. The code was a reservoir simulator, so I organized it 

along the lines of: rock properties, fluid properties, gridding, coefficients, linear solver, etc. 

Later, the concept of object-oriented programming (OOP) was introduced, and I realized that 

was what I was trying to achieve. The most important OOP concept is the packaging of data 

and procedures together - called encapsulation. OOP was difficult (impossible) to fully 

implement in Fortran 77, which was the only viable language on the targeted supercomputers. 

However, I managed to put the code in separate files, and the data into common blocks 

accessed by only those files. One of the greatest difficulties encountered with my Fortran 77 

project was the lack of an ability to allocate memory. Eventually, I used two small C programs 

as portable assembly language and on top of them developed my own first-fit memory 

allocation code, all in Fortran 77. The code would compile and run (without manual 

modifications) on most of the supercomputers, workstations and PC’s available in the 1990s. 

Mixed language programing is now easier. If I were writing a similar code today, it would use a 

mixture of languages.  

What are my credentials? I am not an academic, but I have taught a few courses at the 

university level. I consider myself a researcher, but also an implementer. For my thesis I 

worked on the formulation and implementation of models for automotive catalytic converters. 

Those models were very advanced for the time and more comprehensive than most that 

appeared years after. Later, I worked for a large oil company research center developing 

numerical methods for petroleum reservoir simulation, specifically finite element methods and 

compositional models for enhanced oil recovery. When the oils companies began to 

downgrade their research programs in the 1980s, I formed my own company. There, my 

coworkers and I wrote, maintained and successfully licensed reservoir simulation software to 

oil companies all over the world. The code targeted the supercomputers available at the time. 

However, we discovered that once the code was streamlined for vector processing, it also 

performed quite well on personal computers and workstations. My 15 minutes of fame came at 

a meeting of the Society of Petroleum Engineers in 1987. A comparison of several simulators 

on the same problem revealed that ours was faster by orders of magnitude, while giving 

comparable results. Obviously, there was more to it than just vector processing. In the mid-

1990s, we were the first to demonstrate a simulation with over a million grid cells. I used to 

consider myself – an engineer, mathematician and computer scientist in more or less equal 

measure. After successfully running my engineering software company, I added businessman 

to the list. 
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1. Introduction to the Basics 
The Weighted Residual, Spectral and Finite Element methods are procedures for the 

approximate solution of differential equations. Although methods of this type are applied in the 

time domain for evolution or initial value problems, our attention here is restricted to 

applications in the spatial coordinates, such as in problems of boundary value type. These 

methods are often portrayed as being different, but they are basically the same or at least are 

based on the same principal. They all represent the solution by a trial solution or assumed 

form with adjustable parameters. The parameters are selected by forcing weighted averages of 

the equation residual to zero. Some of the methods produce excellent accuracy but with large 

computational complexity, while others are simple but have low accuracy. The primary focus of 

the monograph is on methods which give good accuracy, but with reduced complexity. These 

methods are collocation-like methods but have been given various names - Orthogonal 

Collocation (OC), Pseudospectral Method (PS), and Differential Quadrature Method (DQ).  

By various names these methods have been applied extensively in such diverse fields as: solid 

and structural mechanics, fluid mechanics, elasticity, computational chemistry and chemical 

physics, quantum mechanics, biomedical modeling, optimal control, acoustics, geophysics and 

seismic modeling, heat and mass transfer, water resource modeling, petroleum reservoir 

simulation, chemical reaction engineering, meteorology and atmospheric modeling, and 

electromagnetism.  

1.1 Trial Functions 

When polynomial trial or basis functions are used, the form of the polynomials is one area of 

considerable confusion. Some texts state they are using orthogonal polynomials (called a 

modal approach) when they are not. Others imply orthogonal polynomials should always be 

used, warning of dire consequence otherwise. In fact, Lagrange interpolating polynomials are 

just as good and lead to a more intuitive nodal approach. Both approaches give identical 

answers, but they are in a different form. A nodal approach is used here, but all approaches 

are discussed in order to show their differences.  

All Methods of Weighted Residuals (MWR) start with an assumed form or trial solution which 

contains a finite number of adjustable parameters. Although nonlinear trial solutions are 

possible, the usual procedure is to use a linear combination of trial or basis functions. For 

example, if one is solving for a variable u, the solution is approximated by: 

 
𝑢 ≅ 𝑢̃ = ∑ 𝑎𝑘

𝑛

𝑘=1

𝜓𝑘(𝑥) (1.1) 

Where x represents one or more spatial coordinates, the a are adjustable parameters which 

could be time dependent, and the ψ are called trial functions or basis functions. The trial 

functions often, but not always, satisfy the boundary conditions. MWR, spectral methods and 

finite elements satisfy the differential equation approximately by forcing weighted averages of 
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the error or residual of the differential equation to vanish. This criterion produces values for the 

adjustable parameters. 

We distinguish between several different types of trial functions. In this monograph, all trial 

functions are polynomials. In early applications, the trial functions were often simple 

monomials, xk. Later applications used orthogonal polynomial trial functions, usually Legendre 

or Chebyshev polynomials. This approach is called a modal approximation since the 

adjustable parameters are analogous to the modes in a Fourier series. Modal trial functions 

are like: 

 
𝑢̃ = ∑𝑎𝑖𝑃𝑖−1(𝑥)

𝑛

𝑖=1

    or 

= 𝑥(1 − 𝑥)∑ 𝑎𝑖𝑃𝑖−1(𝑥)

𝑛

𝑖=1

 

(1.2) 

where Pi is an ith degree orthogonal polynomials. The second form is one way of constructing 

modal trial functions for homogeneous boundary conditions 𝑢(0) = 𝑢(1) = 0. An example is 

presented in Fig. 1.1.  

The method is more intuitive and finite-difference-like if the adjustable parameters represent 

the approximate solution at the collocation or nodal points rather than polynomial coefficients, 

i.e. 𝑎𝑘 = 𝑢̃(𝑥𝑘). In this case it is called a nodal approximation and the trial solution is: 

 
𝑢̃ = ∑ 𝑢̃(𝑥𝑖)ℓ𝑖(𝑥)

𝑛+1

𝑖=0

 (1.3) 

where the trial functions, ℓi(x), are Lagrange interpolating polynomials: 

x

x
(1

-x
)P

n

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

Fig. 1.1 Modal orthogonal polynomial trial functions, n = 6
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ℓ𝑖(𝑥) = ∏

(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛+1

𝑗=0
𝑗≠𝑖

  

An example of nodal Lagrange trial functions is displayed in Fig. 1.2. Note these trial functions 

have the property ℓ𝑖(𝑥𝑗) = 𝛿𝑖𝑗. 

The choice of modal or nodal representations is largely a matter of convenience. In the 

absence of computer rounding errors all choices produce absolutely identical approximations. 

This important fact is obscured in many texts that emphasize the importance of orthogonal 

polynomial trial functions. 

The easiest way to treat multidimensional problems is by using combinations of the one- 

dimensional trial functions. For example, Eq. (1.3) can be extended by the addition of a 

second, y, coordinate by: 

 

𝑢̃ = ∑ ∑ 𝑢̃(𝑥𝑖, 𝑦𝑗)ℓ𝑖
𝑥(𝑥)

𝑛𝑦+1

𝑗=0

ℓ𝑗
𝑦
(𝑦)

𝑛𝑥+1

𝑖=0

 (1.4) 

Trial functions composed of one-dimensional trial functions like this are called tensor product 

trial functions.  

Finally, we distinguish between global trial functions where a single continuous polynomial 

approximates the solution, like Eqs. (1.2), (1.3) and (1.4), and piecewise continuous trial 

functions called finite element or spectral element approximations. Finite element trial functions 

are also called shape functions. In finite elements, polynomial trial functions are continuous 

within subdomains called elements but have limited continuity at the interface between 

elements. When the elements are distorted using a polynomial to describe their boundaries, 

they are called isoparametric elements. Fig. 1.3 shows an example where the trial functions 

x

l i

0 0.2 0.4 0.6 0.8 1

0

.5

1

Fig. 1.2 Nodal Lagrange interpolating polynomial trial functions, n = 6
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are simple linear interpolants of the solution. Finite element trial functions are usually nodal, 

like these, but modal trial functions have been used also. 

Lanczos (1938,1956) was an early adopter of modal approximations. Villadsen and Stewart 

(1967) were the first to use nodal approximations in this context. Both considered only global 

trial functions. Courant (1943) was first to use finite element trial functions. In this monograph, 

we will initially consider global approximations, because they are easier to grasp. Finite 

elements are more understandable as an extension to global methods. 

1.1.1 Orthogonal Polynomials and Quadrature. The distinguishing feature of orthogonal 

collocation is that the collocation points are chosen to be roots of orthogonal polynomials. The 

collocation points are usually the roots of Chebyshev polynomials of the 1st or 2nd kind, or the 

base points of Gaussian, Radau or Lobatto quadrature. Gaussian quadrature base points are 

the roots of Legendre polynomials. All these choices are the roots of Jacobi polynomials. 

When defined on the interval [0,1] they possess the orthogonality:   

 
∫ (1 − 𝑥)𝛼𝑥𝛽𝑃𝑛

(𝛼,𝛽)
(𝑥)𝑃𝑚

(𝛼,𝛽)
(𝑥)𝑑𝑥

1

0

= 0  for  𝑛 ≠ 𝑚 (1.5) 

where α = β = -½, 0, +½, +1 for the Chebyshev 1st kind, Legendre (Gauss), Chebyshev 2nd kind 

polynomials, and for those whose roots are Lobatto quadrature base points, respectively. For 

x0 0.2 0.4 0.6 0.8 1

Fig. 1.3 Linear finite element trial functions

element 4
element

1 element 3
element

2 element 8element 5 element 6 element 7

x

P
n

0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

3

Legendre/Gauss

Chebyshev 2
nd

Jacobi/Lobatto

extrema

extrema

Fig. 1.4 Polynomials and extrema for n = 8,  =  = -½, 0, +½, +1

Chebyshev 1
st
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increasing n, these polynomials are alternating symmetric and antisymmetric about the 

centerline. Radau points are asymmetric with α = 0, β = 1 or α = 1, β = 0. The right half of the 

symmetric polynomials along with their extrema are compared in Fig. 1.4 for n = 8. What 

should be noted in Fig. 1.4 is that as α increases the roots are shifted away from the boundary 

and there is a greater variation in the extrema. The endpoint for the Jacobi (1,1) polynomial is 

off scale at 9. In all cases the points are more tightly clustered near the boundaries, with 

spacing O(1/n2). The Chebyshev polynomials of the 1st kind are the favorite ones for 

interpolation, since in general they minimize the maximum error [Hildebrand (1987) p. 469]. 

Note that in Fig. 1.4 the Chebyshev polynomials are normalized like other Jacobi polynomials 

rather than the traditional way. 

Orthogonal polynomials are closely tied to the theory of accurate numerical integration 

methods. For a general reference to orthogonal polynomials and quadrature, the reader is 

directed to Hildebrand (1987) and Krylov (1962). The selection of these points is related to 

numerical integration of the form: 

 
∫ 𝑓(𝑥)𝑥𝛾𝑑𝑥

1

0

≅ 𝑊0𝑓(0) + ∑ 𝑊𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

+ 𝑊𝑛+1𝑓(1) (1.6)  

where γ = 0,1 and 2 for planar, cylindrical and spherical geometry. Fig. 1.5 plots an example of 

quadrature point locations and weights for cases without symmetry, while Fig. 1.6 shows 

examples for cases with symmetry. For nonsymmetric problems, all but Radau points have 

points and weights symmetric about the centerline. For Gaussian quadrature, endpoint weights 

are not used, W0 = Wn+1 = 0, while the Radau-Left quadrature shown has W0 > 0 and Wn+1 = 0. 

There is a mirror image Radau-Right formula where the weights and points are switched 

around. For Lobatto and Chebyshev (of the 2nd kind) points W0 = Wn+1 > 0. For symmetric 

problems, the boundary condition 𝑑𝑢 𝑑𝑥⁄ = 0 at x = 0 is automatically satisfied by symmetry, so 

a point is not used at the left end. At the right end Wn+1 = 0 for Gauss points and Wn+1 > 0 for 

Lobatto quadrature. Many claim the approximation of boundary conditions is improved by 

nonzero weights at the boundaries; however, we will show that the exact opposite is often true.  

x

w

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Lobatto

Gauss

Chebyshev

Radau Left

Fig. 1.5 Quadrature points and weights, n = 6

x

w
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0.1
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0.25

Lobatto - Cylindrical
Gauss - Cylindrical
Lobatto - Spherical
Gauss - Spherical

Fig. 1.6 Symmetric quadrature base points and weights
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The various quadrature formulas can calculate exact integrals when the integrand of Eq. (1.6) 

is a polynomial of degree 2n+1, 2n, 2n-1 and n+1 for Lobatto, Radau, Gauss and Chebyshev  

points, respectively. For problems with symmetry, the quadrature is exact for polynomials in x2 

of degree 2n and 2n-1 for Lobatto and Gauss points, respectively. For Chebyshev points, the 

Clenshaw-Curtis (1960) quadrature is formally less accurate, which is certainly not obvious 

from examination of Fig. 1.5. Some claim it is just as accurate in many applications [Trefethen 

(2008)]. Clenshaw-Curtis quadrature is distinct from Chebyshev-Gauss quadrature which has 

accuracy O(2n) when the radical 1/√1 − 𝑥2 is included in the integrand of Eq. (1.6). Note, on 

the shifted interval [0,1] the radical is 1/√𝑥(1 − 𝑥); however, for purposes of discussion only 

the unshifted form is given. 

1.1.2 A Note on Terminology. One goal of this monograph is to present a unified and 

consistent description of methods, and to show relationships between methods, including the 

equivalence of methods which are normally considered to be different. Also, this subject area 

can be a virtual minefield of conflicting terminology due to different naming conventions and so 

forth.  

It is not surprising the terminology is confusing, since related methods have been developed in 

several different disciplines and different countries over a period of many years. Barriers exist 

due to language and lack of familiarity with the many branches of science, engineering and 

mathematics. A method may be invented or reinvented in one area when much development 

work has already occurred in a different discipline. It might eventually be discovered that the 

methods are related, or equivalent or in some cases identical. Even when the methods are 

shown to be identical, the naming conventions of methods may continue to be different. The 

proliferation of names is a major problem, since it causes confusion and inhibits 

communication. 

For cases when different names exist for the same method, we have tried to list them all 

initially but then choose a single name. The choice is based partly on popularity, but with 

preference accorded to the name given originally. In most cases methods are considered the 

same, if they give the same answer, i.e. they are equivalent.  

For example, some consider a collocation method to always use nodal trial functions. If modal 

trial functions are used it might be called a pseudospectral method. Since the names are 

different, you would think they are different methods. However, the basic method and the 

results are the same, although the results are in a different form. It makes more sense to call it 

either a nodal or modal collocation method. There is no need to use two entirely different 

names. The name collocation is preferred, since it predates the pseudospectral name by 

several decades. The name interpolation method was used even earlier, but outside the 

Russian literature it is rarely used and not sufficiently descriptive. The method is also called the 

method of selected points and the matching points method.  

There are also the names finite element, spectral element, and differential quadrature element 

method. The only distinction is that finite element methods usually employ low order trial 
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functions, while spectral element methods often employ higher order trial functions. There is no 

clear line of separation. This difference is relatively minor, so there is little justification for 

multiple names. Using these different names, is like using entirely different names for second 

and fourth order finite difference methods. We prefer to use the term finite element for all three, 

since it is more popular and it predates the other two names by at least two decades. For 

clarity, a method could be called a low or high order finite element method or the specific order 

or degree could be used, e.g. Hermite cubic finite element. 

To aid the reader, we have endeavored to include the alternate names for various quantities 

and italicize names when first presented and defined.  

Designation of the roots or collocation points is one of the more confusing terminology issues 

one encounters. For example, the names for the roots considered are: 

− Chebyshev polynomials of the 1st kind also called: Chebyshev-Gauss or abbreviated 

CG points or simply Chebyshev points or a roots grid 

− Chebyshev polynomials of the 2nd kind also called: Chebyshev Extrema or 

Chebyshev-Gauss-Lobatto or abbreviated CGL points or simply Gauss-Lobatto or 

Chebyshev points 

− Legendre polynomials also called: Gaussian quadrature base points or abscissa or 

Legendre-Gauss or abbreviated LG points or simply Legendre or Gauss points 

− Jacobi Polynomials (α = 0, β = 1 or α = 1, β = 0) also called: Radau points, Radau 

quadrature base points or abscissa, Legendre-Gauss-Radau or abbreviated LGR points 

− Jacobi Polynomials (α = β = 1) also called: Legendre Extrema points or Jacobi points 

or Lobatto quadrature base points or abscissa or Legendre-Gauss-Lobatto abbreviated 

LGL points or simply Gauss-Lobatto or Lobatto points 

 

Beware of the terms Chebyshev and Gauss-Lobatto since both are thrown around loosely for 

two different sets of points. In this monograph, we will not consider collocation at the roots of 

Chebyshev polynomials of the 1st kind, so Chebyshev with no clarification designates 

Chebyshev polynomials of the 2nd kind. The other points in Figs. 1.5 and 1.6 are called by the 

names found in most standard numerical analysis texts, i.e. Gauss, Lobatto or Radau (left or 

right) points [Hildebrand (1987)].  

1.2 Historical Perspective 

The Method of Weighted Residuals (MWR) is a family of methods for the approximate solution 

of differential equations [Crandall (1956), Ames (1966), Finlayson (1972, 2014)]. Although 

nonlinear assumed forms are possible, one usually approximates the solution with a linear 

combination of trial functions like Eqs. (1.1), (1.2), or (1.3). For example, suppose we seek a 

solution of the equation: 

 𝑢𝑥𝑥 + 𝑔(𝑥, 𝑢, 𝑢𝑥) = 0 (1.7) 
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for 0 < x < 1, with u(0) = u0 and u(1) = u1. The residual is formed by substituting the 

approximate solution, Eq. (1.1), into the differential equation: 

 
𝑅(𝑥, 𝒂) = ∑ 𝑎𝑘

𝑛

𝑘=1

𝜓𝑘𝑥𝑥 + 𝑔(𝑥, 𝑢̃, 𝑢̃𝑥) (1.8) 

If the residual is zero for all x, an exact solution has been achieved.  In general, this will not be 

possible, so the parameters, a, are selected so the residual will be small in some sense.  If the 

residual is small for all x, Eq. (1.1) is a good approximation to the true solution. MWR achieves 

this goal by forcing the function to zero in a weighted average sense: 

 
∫ 𝑤𝑘(𝑥)𝑅(𝑥, 𝒂)𝑑𝑥

1

0

= 0  for  𝑘 = 1, … , 𝑛 (1.9) 

The wk are called weight or test functions. Different choices for the n weight functions lead to 

fundamentally different forms of MWR. Finlayson and Scriven (1966) review the early 

development of these basic procedures.  

We will consider the following methods: 

1. 𝑤𝑘 = 𝜓𝑘(𝑥) or 𝜕𝑢̃ 𝜕𝑎𝑘⁄ , Galerkin method 

2. 𝑤𝑘 = 𝜕𝑅 𝜕𝑎𝑘⁄ , least squares 

3. 𝑤𝑘 = 𝑥(𝑘−1) or 𝑃𝑘(𝑥), method of moments 

4. 𝑤𝑘 = 1  for  𝑥  in  Ω𝑘, subdomain 

5. 𝑤𝑘 = 𝛿(𝑥 − 𝑥𝑘), collocation method 

Several texts include the tau method of Lanczos (1938, 1956) as a MWR. The tau method can 

be equivalent to a number of these methods, but is usually equivalent to the method of 

moments, see section 1.2.7. 

The MWR were created in the early 20th century to generalize the Rayleigh-Ritz variational 

procedure, which has limited applicability. The name MWR came about from discussions at the 

First International Congress on Applied Mechanics held in 1924 in Delft, Netherlands. 

Following a presentation by Biezeno (1924) on the subdomain method, Courant (1924) 

commented that the subdomain method was an especially simple special case of a method 

where the basic principal is that “weighted averages of the residuals” should vanish. Crandall 

(1956, p. 147) was first to illustrate the methods in a unified way, restating Courant’s 

observation. These comments led to the name Methods of Weighted Residuals (or Method of 

Mean Weighted Residual or Weighted Residual Method). Collatz (1961) called them error 

distribution principals. The principal of error distribution figures prominently in discussions of 

Lanczos (1956) and Ames (1965). This principal distinguishes the methods from Taylor series 

which concentrates the accuracy at a single point. The early literature sometimes called them 

direct methods. They are also called projection methods, orthogonalization methods or 

orthogonal projection methods.  
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For practical purposes, the popular name Spectral Method has become synonymous with 

MWR. The name seems to have originated in the study of atmospheric modeling.  In 

Silberman (1954) spherical harmonic trial functions were used to describe atmospheric waves. 

The name spectral method was not used, but later papers discussed the “spectral form of the 

vorticity equation” [Platzman (1960)]. The approach eventually became known as a “spectral 

method” to distinguish it from finite differences [Ellsaesser (1966)]. Later, the name was 

retained for other types of trial functions, such as Fourier series and Chebyshev polynomials 

[Orzag (1972, 1974)] and for Legendre polynomial and nodal trial functions [Canuto, et al. 

(1988), Trefethen (2000)]. The name is usually associated with global trial functions which are 

applied with Galerkin, tau and pseudospectral methods. The pseudospectral method is just 

another name for the collocation method and section 1.2.7 shows the tau method is equivalent 

to the method of moments. 

1.2.1 Rayleigh, Ritz, Bubnov and Galerkin Methods. Variational calculus dates from the 

time of Euler and Lagrange in the eighteenth century, but until the work of Walther Ritz (1908, 

1909) it had received little use as a procedure to approximate the solution of differential 

equations. The variational method associates the differential equation with the Euler equation 

for a functional. Minimization or maximization of the functional with respect to a trial space 

gives an approximate solution to the differential equation.  

Ritz used this idea to tackle the problem of an elastic plate clamped on both ends for a 1907 

competition of the Academy of Science in Paris. He followed it up with solution of the Poisson 

problem and an eigenanalysis of the problem of the Chladni figures (Gander and Wanner, 

2012). He used variational principals to derive elegant solutions to these problems. Ritz 

contracted tuberculosis in 1900 and had never recovered. He completed his epic papers 

shortly before his death in 1909 at the age of 31. 

Long before the work of Ritz, Lord Rayleigh (John William Strutt) had used variational methods 

to estimate the principal vibration modes of elastic strings, bars, membranes and plates in his 

classic book The Theory of Sound (Rayleigh, 1877) and other publications. Rayleigh (1911) 

wrote a paper congratulating Ritz on his work, but claimed it was not a new idea, since he had 

already used the method long before. Rayleigh’s response cast a cloud over Ritz’ work.   

Since the work of Ritz, the method is sometimes called the Ritz method at other times the 

Rayleigh-Ritz method. Lately, naming of the method has come under question. After a 

thorough study of the original publications, Leissa (2005) concluded that Rayleigh’s 

contribution was not significant enough to warrant the inclusion of his name in designation of 

the method. Leissa writes: 

It concludes that, although Rayleigh did solve a few problems which involved minimization of a 
frequency, these solutions were not by the straightforward, direct method presented by Ritz and 
used subsequently by others. Therefore, the present writer concludes that Rayleigh’s name should 
not be attached to the Ritz method; that is, the Rayleigh–Ritz method is an improper designation.  

Others offer a different viewpoint [Finlayson [(1972,2014), Ilanko (2008)]. For example, 

Finlayson writes in the main text and a footnote (pp 223-4): 
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The variational method is known as the Rayleigh-Ritz method, although some authors call it the Ritz 

method. Close examination of Rayleigh's works indicates Rayleigh used the variational method to 

calculate successive approximations to both boundary and eigenvalue problems. For example, 

Rayleigh (1873) treats eigenvalues which are stationary, although he does not give any approximate 

method of determining them. He added the comment (Rayleigh, 1896, p. 110) that the eigenvalue is 

a minimum (the equilibrium is absolutely stable) and gives a method for approximating the 

eigenvalues. In 1899 Rayleigh clearly applies the variational method to calculate the frequency of 

vibration of a fluid partially filling a horizontal cylinder, including a second approximation (Rayleigh, 

1899). Even earlier Rayleigh (1871) applied the variational method to a boundary value problem. He 

calculated the approximate solution for flow through a cylindrical hole in a flat plate, including a 

second approximation, using the variational principle. See also Rayleigh (1896, Section 307 and 

Appendix A). Rayleigh himself (1911) commented on Ritz’s paper (1908), saying he was surprised 

that Ritz thought his method new. As Courant (1943) remarked, it was probably the tragic 

circumstances of Ritz’s work that caught the general interest. Ritz wrote his papers (1908, 1909) 

while aware that he was soon to die of tuberculosis. The variational method is also more clearly 

presented in Ritz’s papers. 

One convention is to call it the Rayleigh-Ritz method when it is used with a single term, e.g. to 

estimate a principal eigenvalue, and to call it the Ritz method when multiple terms are used. 

However, Rayleigh’s applications were not restricted to single term approximations. Clearly, 

Ritz’ work demonstrated for the first time, a straightforward application of variational principals 

to solve differential equations. For many problems, the method converges so fast that only a 

few terms are required to obtain an accurate solution, so the method is useful even when one 

is restricted to hand calculations.  

For some time, the significance of Ritz’ work was not recognized in western Europe and 

America, but it was used immediately in Russia. The method was first used there by 

Timoshenko (1910). Then, Ivan Bubnov, a Russian engineer involved in ship building, used the 

method in designing the hulls of submarines (1913,1914).  

Ritz’ work was a major breakthrough, but since some problems cannot be based on a 

variational principal, the method’s applicability is limited. The MWR were developed to fill the 

need for methods which are generally applicable. The Galerkin method was the first such 

method and is a direct generalization of the Rayleigh-Ritz method. Boris Galerkin was another 

Russian engineer working with steam locomotives. He weighted the residual by the trial 

functions. For problems which can be treated with a variational procedure, the Galerkin 

method is equivalent. It was described by Galerkin (1915) in a study of elastic equilibrium and 

the stability of rods and plates. The earlier paper by Bubnov (1913) had many similarities, but 

Galerkin was the first to describe a method without any reliance on a variational principal. Due 

to these relationships it is called the Bubnov-Galerkin method in Russian literature and often 

the Rayleigh-Ritz-Galerkin method in western literature. The name or names used to designate 

the method seem to correlate with the nationality of the author. The Galerkin method is the 

most heavily used MWR and can be considered the gold standard for these methods. 

The Galerkin method is usually implemented in its weak form, like the Rayleigh-Ritz method. 

Substitution of the residual of Eq. (1.7) into Eq. (1.9), weighting by the trial functions and then 

integrating by parts produces: 
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∫ 𝜓𝑘(𝑥)𝑅(𝑥, 𝒂)𝑑𝑥

1

0

= ∑ 𝑎𝑗

𝑛

𝑗=1

∫ 𝜓𝑘

𝑑2𝜓𝑗

𝑑𝑥2
𝑑𝑥

1

0

+ ∫ 𝜓𝑘𝑔(𝑥, 𝑢̃, 𝑢̃𝑥)𝑑𝑥
1

0

 

= 𝜓𝑘

𝑑𝑢̃

𝑑𝑥
|
0

1

− ∑𝑎𝑗

𝑛

𝑗=1

∫
𝑑𝜓𝑘

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
𝑑𝑥

1

0

+ ∫ 𝜓𝑘𝑔(𝑥, 𝑢̃, 𝑢̃𝑥)𝑑𝑥
1

0

 

(1.10) 

This is called the weak form since the trial function continuity requirements are reduced. For 

the Galerkin method with Dirichlet conditions, the trial solution must obey the boundary 

conditions, so for the conditions on Eq. (1.7) the boundary terms are zero. The second 

derivative term is called a bilinear form. Of course, integration by parts does not alter the 

result, but it makes evident the symmetry of the second derivative term. For multidimensional 

problems, the integration by parts generalizes to the divergence theorem. 

A variational or Rayleigh-Ritz method is not normally considered a MWR. However, since the 

Galerkin method is a generalization of the Rayleigh-Ritz method, variational methods are in 

effect included. Many authors do not make a distinction and use the names variational method 

and Galerkin method interchangeably. To be correct, a method should not be called a 

variational or Rayleigh-Ritz method unless it can be based on variational calculus.  

1.2.2 Least Squares. Least squares is a very old idea for approximating functions. Here, it is 

used to force the residual to approximate zero. In the context of solving differential equations, 

Finlayson and Scriven (1966) attributed its first use to Picone (1928). However, we note the 

method was discussed in an earlier paper by Krylov (1926).  

The least squares method works well for simple differential equations. However, for equations 

with nonlinearity and many terms it is more difficult to implement. The method is also 

problematic for eigenvalue problems, since linear equations become nonlinear eigenvalue 

problems [Finlayson and Scriven (1966)]. For these reasons, its popularity has waned as more 

complex problems have been tackled.  

1.2.4 Method of Moments. In western literature, the method of moments is usually 

described as the use of monomial weights in Eq. (1.9) , i.e. 𝑤𝑘 = 𝑥(𝑘−1), but the weights are 

sometimes given as 𝑤𝑘 = 𝑃𝑘(𝑥), where the Pk are successive members of a complete set 

[Ames (1966), Villadsen (1970)]. The method is actually more general. 

The basic ideas behind the method of moments were first presented by N.M. Krylov at a 

session of the All Ukraine Academy of Sciences in 1926 [Krylov (1926,1961), Lucka and Lucka 

(1992)]. The formulation of the method permits a great deal of flexibility. In fact, in a limited 

way, it includes the least squares and Galerkin methods as special cases. Originally, given 

some linear differential operator, M, the weight functions are chosen as 𝑤𝑘 = 𝑀𝜓𝑘. The linear 

operator, M, has the same order, but can be different from that of the equation being solved. 

The least squares method is produced if linear operator, M, is the same as that of the equation 

being solved. Weighting by, ψk, the eigenfunctions of a linear operator gives the Galerkin 

method, since 𝑀𝜓𝑘 = 𝜆𝜓𝑘. 
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The method of moments was thoroughly studied by Mykhailo Kravchuk (1926,1932) in 

fundamental studies published from 1926-1937. The basic results of these studies are 

summarized by Lucha and Lucha (1992) (including 18 Kravchuk references, mostly in 

Ukrainian or Russian). Kravchuk spent much of his short and tragic career studying the various 

conditions on the linear operator and trial functions and resulting convergence properties. 

Shuleshko (1959) provided some additional elaboration and extensions of the method.  

Since Legendre or other Jacobi polynomials are eigenfunctions of a Sturm-Liouville problem, 

weighting by Jacobi polynomials is a method of moments. Of course, if the residual is 

orthogonal to Legendre polynomials it is also orthogonal to all the monomials, x(k-1), up to the 

same degree.  

The idea of using monomials is apparently due to Yamada (1947) as described by Fujita 

(1953) in his study of diffusion in gels. Weighting by monomials can lead to ill conditioned 

approximations and some have rejected the method of moments for that reason [Boyd (2000) 

p. 62]. In most western literature today, the method of moments is generally considered to be 

weighting by monomials, but in the current monograph we include equivalent methods, such 

as weighting by Legendre polynomials. 

An exception to the statement above is the use of the method of moments in electromagnetic 

field calculations. It has received extensive use in that field of study [Harrington (1968,1990)]. 

The name is used like MWR, an umbrella term used to cover several methods, including the 

Rayleigh-Ritz, Galerkin and collocation methods. However, the field has developed its own 

terminology, e.g. the collocation method is usually called the point matching method, while 

finite element methods are called the method of subsections. 

A basic idea behind the Galerkin and moments methods are that if the weight functions are 

members of a complete set, then as n ⟶ ∞ the residual must converge to zero. Of course, 

only a finite number of trial functions are used in practice, but the property of completeness is 

important for insuring convergence of the sequence of approximations. 

1.2.3 Subdomain Method. The subdomain method was first described by Biezeno and 

Koch (1923,1924) and prompted Courant’s (1924) observations concerning the common 

principle of this and other methods, leading to the name MWR. In the subdomain method the 

weight functions are unity in subdomains of the problem. The differential equation is satisfied 

on the average in the n subdomains. As n is increased, the differential equation is satisfied in 
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a larger number of smaller and smaller subdomains. The intersection of the subdomains 

usually fills the problem domain, but this is not a requirement. An example of subdomain 

weight functions is illustrated in Fig. 1.7. 

1.2.5 Collocation. The collocation method dates from the 1930’s. It is similar to the 

subdomain method, but the subdomains are shrunk to zero width with unit volume. Thus, the 

weight functions are represented by Dirac delta functions. Integration is not required, the 

residuals are set to zero at n collocation points. As n is increased the residual is zero at more 

points. An example with six collocation points is illustrated in Fig. 1.8. 

Early work on the method is due to Slater (1934), Kantorovich (1934), Frazer, et al. (1937) and 

Lanczos (1938). Kantorovich called it the interpolation method, Lanczos called it the method of 

selected points, while Frazer, et al. applied the name collocation, citing its definition in the 

Oxford dictionary. Using all three names we can say the method interpolates the residual to 

zero at selected collocation points. Since integration is not required, it is simpler to apply than 

the other methods which require integration. Simplicity is its most attractive feature. 

Slater applied the method to study energy bands in metal. A translation of the Kantorovich 

article is not available, but it is discussed in other articles. Frazer, et al. compared equally 

spaced collocation to the Galerkin and least squares methods on several problems. Frazer, et 

al. argued that the method would converge whenever the Galerkin or least squares methods 

converge. However, Karpilovskaya (1963) points out flaws in their argument.  

Karpilovskaya (1953,1963) was the first to present proof of convergence of the collocation 

method. His proof is discussed by Kantorovich and Akilov (1964, p. 581). The proof relies on 

the assumption that the collocation points are roots of an orthogonal polynomial. Since 

collocation is basically interpolation of the residual, the Runge (1901) phenomenon can occur, 

e.g. with equally spaced points (see Fig. 2.36). A good example of problems associated with 

equally spaced collocation can be found in Bert and Malik (1996). Frazer et al. were apparently 

aware of the Runge phenomenon, but did not observe it for their problems, probably because 

high order approximations were not calculated.  

Lanczos used Chebyshev polynomial trial functions and collocated at the roots of Chebyshev 

polynomials of the 2nd kind. Clenshaw and Norton (1963) collocated at the same points and 

discuss several implementation details for nonlinear problems. Wright (1964) collocated at the 

roots of Chebyshev polynomials of the 1st kind, arguing that this choice would minimize the 
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maximum deviations of the residual from zero. However, a uniform distribution of the residual 

does not produce a uniform error in the solution. Villadsen (1970) thoroughly reviews other 

early Chebyshev applications. The use of Chebyshev roots was an important advance, since 

the Runge phenomenon does not occur. 

Villadsen and Stewart (1967) made a further improvement by selecting the roots of Jacobi 

polynomials that are the base points of accurate numerical integration schemes, e.g. Gaussian 

or Lobatto quadrature. They chose the name Orthogonal Collocation for their variation on the 

method. They explained that collocation at Lobatto points was equivalent to numerical 

integration of the Galerkin method. An accurate (sometimes exact) approximation of the 

Galerkin method is achieved. They also improved the method by formulating it with nodal 

values rather than polynomial coefficients. This modification produced a more intuitive, finite-

difference-like method and facilitated automation of the method for general applications. The 

title of their article is – “Solution of Boundary-Value Problems by Orthogonal Collocation.”  

Despite the title, they demonstrated the method for not only a boundary value problem, but 

also the parabolic transient catalyst pellet problem, eigenvalues for the Graetz problem and the 

elliptic 2-dimensional Poisson equation. The method was demonstrated for all but hyperbolic 

equations. 

In the 1970’s, the development of collocation methods occurred in three threads: (1) 

Orthogonal Collocation (OC), (2) Pseudospectral (PS) and (3) Differential Quadrature (DQ). 

The OC thread started with the Villadsen and Stewart article, with further development 

reported in Villadsen (1970), Finlayson (1972) and Villadsen and Michelsen (1978). These 

references describe collocation at Gauss, Lobatto and Radau points. Collocation at Gauss 

points was shown to be equivalent to numerical integration of the method of moments. In 

addition to standard cartesian coordinates, they describe methods for symmetric problems in 

planar, cylindrical and spherical coordinates. Nodal differentiation matrices are used 

exclusively. These developments led to a flurry of activity applying the method to different 

problems [see references in Michelsen and Villadsen (1972, 1981), Finlayson (1974)]. Many of 

these early papers demonstrated very favorable comparisons of the method with finite 

differences. A later text describing the method is that of Finlayson (2003). 

The Pseudospectral thread began with the work of Orzag (1972), with further developments by 

Gottlieb and Orzag (1977). The name pseudospectral is normally synonymous with collocation, 

but occasionally it is used to describe other approximations to exact MWR.  Orzag applied 

collocation to a periodic problem using trigonometric trial functions. He also considered a 

nonperiodic linear first order hyperbolic problem with collocation at the roots of Chebyshev 

polynomials of the 2nd kind. For the nonperiodic problem Chebyshev trial functions were used, 

and collocation gave an accurate approximation of the Galerkin method. Nodal approximations 

were not considered. An important contribution of this work was the use of fast Fourier 

transforms (FFT) to perform the calculations. Orzag was apparently unaware of the earlier 

work of Villadsen and Stewart, as it was not referenced.  
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FFT was the spark that ignited work in the PS thread. Subsequent work investigated various 

methods of solution using FFT. A strong mathematical foundation for the method was laid and 

the solution of periodic problems was highly developed. Most of the early work on nonperiodic 

problems employed collocation at Chebyshev points with a modal approach using Chebyshev 

trial functions. Some later applications have used nodal trial functions and collocation at 

Lobatto (or LGL) points. Some excellent texts describe the method, solution algorithms and 

applications [Canuto, et al. (1988, 2006, 2007), Trefethen (2000), Boyd (2000), Peyret (2002), 

Shen, et al. (2011)].  

The Differential Quadrature Method originated with Bellman and Casti (1971), Bellman, et al. 

(1972), and Bellman (1973, p. 244). The first was a short paper advancing the idea of using a 

nodal differentiation matrix in the solution of differential equations. The second paper 

developed the method further and demonstrated it for both first and second order equations in 

one dimension, collocating at Gauss points. However, the paper provided few details regarding 

boundary condition treatment. Bellman, et al. (1972) developed the differentiation matrices for 

collocation at Gauss points. The use of a nodal differentiation matrix was not a new idea. 

Nielsen (1956) presents formulas for them with arbitrary nodal locations. By 1972, nodal 

collocation at Gauss points was well established in the OC literature. Apparently, unlike the OC 

implementation, the DQ method of Bellman, et al. did not use boundary points in order to 

incorporate boundary conditions [Quan and Chang, 1989)]. Nevertheless, DQ was adopted for 

many engineering applications. Bert and Malik (1996) and Bellomo (1997) give excellent 

reviews of developments in DQ. Early development of the method was independent of work in 

the OC and PS communities. Apparently, it was not recognized as a form of collocation until 

the late 1980’s [Quan and Chang, 1989)]. A reference text devoted to DQ is that of Shu (2000). 

Some ideas have been exchanged between the different threads of development, but there 

have also been many cases of rediscovery and failure to give proper credit to an idea or 

method. Chebyshev points have historically been popular in PS applications and are used in 

DQ as well. Gauss points, also called Legendre-Gauss or LG points, are popular in OC 

applications, but not as popular in the PS and DQ communities. Lobatto points, also called 

Legendre-Gauss-Lobatto or LGL points, have become popular in the PS literature. Nodal 

formulations are popular with “the engineers” due to its similarity to finite differences. Nodal 

approximations are used almost exclusively in OC and DQ applications, while PS applications 

use a mix of modal and nodal trial functions. Villadsen and Stewart were the first to use a 

nodal implementation, collocating at Gauss and Lobatto points, but outside the OC community 

they are not credited for these innovations. Symmetric problems in planar, cylindrical and 

spherical coordinates are common in OC applications, while problems with periodic solutions 

are covered almost exclusively in the PS literature.  

1.2.6 Other Weight Functions. Some authors take a more general view and refer to 

virtually all MWR weightings as Galerkin or variational methods. Alternative weighting schemes 

are often called Petrov-Galerkin methods [Petrov (1940)]. However, the name Petrov-Galerkin 

is also used to describe a method of upwinding for convection dominated flow problems. Some 
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authors use the term Petrov-Galerkin for all but the Galerkin and collocation methods. Many of 

these methods are actually methods of moments. 

For Chebyshev methods, the weights in Eq. (1.9) usually include the radical 1/√1 − 𝑥2. This 

term is necessary to exploit the orthogonality of the polynomials and to achieve accurate 

integration with Gauss-Chebyshev quadrature. In naming methods, most authors do not 

distinguish between methods which include the radical. It would be more appropriate to add 

Chebyshev to the name, e.g. Chebyshev-Galerkin method. The naming of methods with 

alternative weight functions is yet another area where terminology can be confusing. In this 

monograph, methods which include the radical will not be used. 

 1.2.7 Tau Method. The tau method was originated by Lanczos (1938, 1956) as a method for 

approximating functions which can be described by differential equations. The basic idea 

behind the method is that rather than find an approximate solution to the differential equation, 

why not find an exact solution to an approximate differential equation? For simple problems, he 

represented the approximate differential equation as the original one with the addition of a 

small perturbation term of the form τPm(x), where τ is a constant and Pm(x) is a high order 

orthogonal polynomial, i.e. m ≈ n. Lanczos discussed using Chebyshev polynomials (2nd kind) 

and Legendre polynomials, but others could be used. Depending on the complexity of the 

problem, several terms may be required. These perturbation terms are the residual as defined 

by Eq. (1.8), so in general Lanczos’ idea was to set: 

 𝑅(𝑥, 𝒂) = 𝜏0𝑃𝑚(𝑥) + 𝜏1𝑃𝑚+1(𝑥) + ⋯ (1.11)  

where the number of terms required depends on the nature of the differential equation. 

Lanczos describes a recursive procedure for determining the values of the τ parameters and 

the coefficients in the approximation, i.e. a in Eq. (1.1).  

The tau method was further developed in a series of articles by Ortiz and coworkers [e.g. Ortiz 

(1969,1975)]. Several solution methods are described which do not involve integration or 

orthogonalization as required by most MWR. Later papers [El-Daou, et al. (1993), El-Daou and 

Ortiz (1997)] explore the equivalence between the tau method and other methods. The 

relationship between the tau method and the integrated MWR is obvious. Since most MWR 

make the residual orthogonal to the first few members of a complete set, the residual is 

proportional to the first neglected term and possibly higher terms. If tau methods are defined to 

include all methods with a residual term like Eq. (1.11), then virtually all MWR (including the 

Galerkin method) would be tau methods. This idea seems silly. Instead, we view the tau 

method as an alternate solution procedure for MWR - one which does not require the 

evaluation of integrals. Indeed, alternative solution algorithms have been described for 

Galerkin and collocation methods [El-Daou and Ortiz (1994, 2007)] 

The lack of a need for integration is the distinguishing feature of the method as presented by 

Lanczos, Ortiz and coworkers. The tau method as presented in the spectral literature [e.g. 

Gottlieb and Orzag (1977, p. 11), Canuto, et al. (1988, p. 10, 2006, p. 21), Boyd (2000, p. 473)] 

bears little resemblance to the method as described by Lanczos (1956). Unlike the algorithms 
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of Lanczos, Ortiz and coworkers, which require no integration, the spectral literature describes 

a MWR which requires integration. For purposes of discussion, call the two approaches the 

Lanczos-tau method and the spectral-tau method. The spectral-Legendre-tau method makes 

the residual orthogonal to the first few Legendre polynomials, so it is the same as the method 

of moments. The spectral-Chebyshev-tau method makes the residual orthogonal to 

Chebyshev polynomials with the additional weight factor of 1/√1 − 𝑥2 [Johnson (1996)], i.e. a 

Chebyshev-moments method.  

The spectral-tau method satisfies boundary conditions by using side conditions, creating a 

messy matrix structure. Whether the boundary conditions are satisfied by side conditions or 

whether they are built into the trial functions makes no difference in the final result [Boyd 

(2000), pp 111-115]. It makes no sense to call it the tau method when side conditions are used 

and the method of moments when the boundary conditions are built-in. This difference in 

method of imposing boundary conditions is trivial compared to the principal difference between 

the Lanczos-tau method and spectral-tau method, i.e. whether integration is required. The 

messy matrix structure can be avoided. Section 3.1.2 describes a nodal form of the method 

giving a symmetric matrix, while section 3.1.7 describes a modal formulation with a near upper 

triangular matrix. 

The Lanczos-tau method offers an interesting approach and philosophy. Its view of the 

residual is revisited in the discussion of the examples in section 3.1.6. However, the spectral-

tau method is identical to the method of moments. Since the method of moments is more 

general and it predates the tau method, we will use the traditional name method of moments in 

this monograph. However, the reader should be aware that the tau method is equivalent.  

Since the residual for MWR with polynomial trial functions can be represented by Eq. (1.11), 

the distribution of residual errors can be shifted by the choice of weighting function, cf. the 

polynomials in Fig. 1.4. A few studies have investigated the influence of the orthogonal 

polynomial selected on the accuracy of the method [Lanczos (1972), El-Daou and Ortiz (1992), 

Namasivayam and Ortiz (1993)]. These error analyses give insight into the differences 

between MWR weighting methods: Galerkin, moments, etc.  They apply to MWR as well as the 

tau method given the relationship between the two. 

1.2.8 Boundary Conditions. Descriptions of MWR distinguish between three different 

approaches: (1) interior methods, (2) boundary methods and (3) mixed methods. An interior 

method employs trial functions which obey the boundary conditions, so the parameters are 

chosen to approximate the differential equation. In boundary methods, the trial functions obey 

the differential equation and the parameters are chosen to approximate the boundary 

conditions. In mixed methods, the parameters are adjusted to approximate both the differential 

equation and boundary conditions. The foregoing sections have primarily addressed 

approximations to the differential equation, which is usually the biggest challenge. 

In order to describe methods for treating boundary conditions, consider the following problem:  

 𝐿𝑢 = 𝑓  (1.12)  
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In the region Ω, with boundary conditions on 𝜕Ω: 

 𝐵𝑢 = 0 (1.13)  

where L and B are linear operators. When the boundary conditions are approximated, the 

residual of the boundary conditions may be required to meet their own independent weighted 

residual criteria. Shuleshko (1959) describes a method of this type, which is like: 

 
∫ 𝑤𝑘(𝐿𝑢̃
Ω

− 𝑓)𝑑𝑉 = 0  for  𝑘 = 1,… , 𝑛1 

∫ 𝑤𝑘𝐵𝑢̃
𝜕Ω

𝑑𝑆 = 0  for  𝑘 = 𝑛1 + 1,… , 𝑛 

(1.14) 

Alternatively, the boundary conditions may be enforced with criteria based on a weighted 

combination of interior and boundary residuals. Kravchuk studied a method of this type [Lucka 

and Lucka (1992)], which is like:  

 
∫ 𝑤𝑘(𝐿𝑢̃
Ω

− 𝑓)𝑑𝑉 + 𝜚𝑛
2 ∫ 𝑤̂𝑘𝐵𝑢̃

𝜕Ω

𝑑𝑆 = 0  for  𝑘 = 1, … , 𝑛 (1.15) 

Where 𝜚𝑛is a parameter that depends on n and 𝜚𝑛⟶ ∞ as n ⟶ ∞. With this approach, the 

boundary condition is satisfied approximately along with the differential equation. Both 

residuals are driven to zero as n ⟶ ∞, so in the limit the differential equation and boundary 

conditions are satisfied. This type of treatment has more recently been called a penalty 

method. 

For the moments (or tau) method, boundary conditions are usually satisfied exactly. They may 

be satisfied through the selection of the trial functions or by using side conditions [Boyd (2000), 

pp 111-115].  

Due to the relationship between the Galerkin method and Rayleigh-Ritz variational method, 

boundary conditions can be treated in the same way. Boundary conditions can be divided into 

two types – essential boundary conditions and natural boundary conditions [Finlayson (1972)]. 

For second order equations, Dirichlet conditions or other conditions on the value of the solution 

variable are essential and must be satisfied exactly. Conditions of the 2nd or 3rd type (Neuman 

or Robin) or others involving derivatives or fluxes are natural boundary conditions. For fourth 

order problems, conditions on the first derivative are also essential, while those involving the 

second or third derivatives are natural.  

Natural conditions can be handled in one of two ways. They can be satisfied exactly, or they 

can be approximated. The natural or approximate treatment is also called a weak formulation 

of the boundary conditions. Exact satisfaction of the boundary condition is called a strong 

treatment or boundary collocation since, like collocation in the interior, the residual of the 

boundary condition is zero. Later chapters will show that the natural or weak treatment of 

boundary conditions is of the combined type, like Eq. (1.15), and as n is increased both interior 

and boundary residuals converge to zero exponentially.  
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With the natural treatment the conditions at the boundary are incorporated into the 

approximation. Consider a Robin or third type boundary condition:  

 𝑑𝑢

𝑑𝑥
|
𝑥=1

= −ℎ(𝑢(1) − 𝑢1) (1.16)  

These conditions frequently occur in problems of heat and mass transfer to represent an 

external resistance, such as heat transfer through a boundary layer, h represents a heat 

transfer coefficient. The natural treatment provides a means to incorporate the impact of the 

surroundings on the system of interest. The approach is especially useful when the boundary 

is governed by another differential equation. The Dirichlet condition, u(1) = u1, is the 

degenerate or limiting case h → ∞. The Dirichlet condition in the Rayleigh-Ritz or Galerkin 

method is treated like a degenerate natural boundary condition. 

Although not a fundamental requirement, collocation implementations normally use a strong 

treatment of boundary conditions [e.g. Finlayson (1972), Villadsen and Michelsen (1978), Bert 

and Malik (1996), Bellomo (1997), Trefethen (2000), Boyd (2000), Peyret (2002)]. Note that 

these references include the OC, PS and DQ threads of development. Although not widely 

publicized, early applications of OC with Lobatto or LGL points uncovered inaccuracies with 

flux boundary conditions [Ferguson and Finlayson (1970), Ferguson (1971), Finlayson 

(1971,1972), Elnashaie and Cresswell (1973)]. Collocation at Gauss or LG points was the 

recommended remedy since the problem occurs only when quadrature weights are nonzero at 

the boundary (see Appendix B). This experience belies the commonly held notion that nonzero 

boundary weights somehow aid in the approximation of boundary conditions.  

Ferguson (1971) described an integral procedure which circumvented the problem with 

Lobatto points, but it is cumbersome, and its applicability is limited. Young (1977) suggested 

that a natural boundary condition treatment would be more appropriate. Later, this idea 

appeared in the spectral literature [Canuto, et al. (1988, 2006), Funaro (1992), Shen, et al. 

(2011)], but these texts also cover the strong treatment, and none claim a significant benefit to 

a weak formulation. Consequently, most applications use a strong treatment or boundary 

collocation for all boundary conditions. More recently Young (2019) presents compelling 

evidence supporting a natural or weak treatment. The examples in later chapters provide a 

close look at this issue.  

1.2.9 Finite Elements. As stated above, a MWR is called a finite element method when it is 

used with piecewise continuous trial functions in subdomains or elements. The beauty of this 

approach is that the elements can be adapted to all sorts of irregular boundaries, e.g. an 

airplane wing or an oil well with multiple branches resembling the roots of a tree. The simplest 

trial functions of this type represent the solution as its linear interpolant, like Fig. 1.3, but 

elements of higher order can easily be constructed. 

Over the years there has been much discussion about the origins of the finite element method 

and several papers have been written on the subject [Oden (1987), Gupta and Meek (1996), 

Clough (2004), Gander and Wanner (2012)]. However, before getting into that discussion, we 
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need to be more explicit about what constitutes a finite element method. It should be defined to 

include two components: (1) solution of a differential equation using a variational method or 

MWR and (2) trial functions that are piecewise continuous in subdomains. Some have cited 

early uses of triangles to calculate areas of irregular objects, but this example does not meet 

condition 1. Others have cited Ritz’ work with global trial functions, which does not meet 

condition 2.  

Many cite a presentation given by Courant in 1941, which was published later with an 

appendix added [Courant (1943)]. The paper has a nice description of the Rayleigh-Ritz 

method and one of the better discussions of the role of natural boundary conditions. The 

appendix presents an example of a plane torsion problem for a hollow square bar, such that an 

element of symmetry is of trapezoidal shape. Gupta and Meek (1996) give a detailed 

discussion of the calculations in the appendix.  Courant first treats the problem using the 

Rayleigh-Ritz method with one and two term global trial functions. Then, he checks those 

results with a “generalized method of finite difference” using several small grids of triangles. 

About the results, he states:  

“…. [the generalized finite difference method] is obviously adaptable to any type of domain, much 

more so than the Rayleigh-Ritz procedure in which the construction of admissible functions would 

usually offer decisive obstacles.”  

Few details are given regarding the generalized finite differences, but this statement seems to 

indicate it is not based on the Rayleigh-Ritz method. However, closer examination of the article 

shows that it is based on the Rayleigh-Ritz variational procedure applied to linear triangular 

approximations. For example, after describing the triangular based trial functions, he states: 

“Our integrals become finite sums, and the minimum condition will be equations for the values of ϕ in 

the net points [i.e. the solution nodal values].” 

This statement shows he is performing integrations and using minimization as part of the 

Rayleigh-Ritz method. Apparently, Courant considered the method to be different from the 

Rayleigh-Ritz method, whereas, it is an application of the same method with a different type of 

trial functions. He chose the misleading name generalized finite differences. It is also 

unfortunate that details of the method were not given. So, although the presentation is obscure 

and details are absent, it appears the method in Courant’s paper meets both conditions to 

qualify as a finite element method.  

Courant clearly promotes triangular grids for domains of irregular shape. About the same time, 

there were some crude methods developed to perform structural analysis on lattice networks 

[Oden (1987)].  

Despite Courant’s stature, his paper had little impact on development of the finite element 

method. Development began in earnest after digital computers became available in the mid-

1950s and by that time Courant’s paper was largely forgotten. Work at Boeing and the 

University of Washington lead to the paper of Turner, Clough, Martin and Topp (1956), which 

many cite as a “first” finite element paper. The finite element name was first used in a paper by 

Clough (1960). These early papers apparently based the approximations on heuristic 
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arguments. It wasn’t until the paper by Melosh (1963) that the approximations were shown to 

be equivalent to the Rayleigh-Ritz method, which helped to establish a better mathematical 

basis for the method. There were many other contributors to early development of the method 

which can be found in the references cited. Of particular interest here is the use of numerical 

integration, which was first described by Bruce Irons (1966).  

As the foundation of the method became more firmly established, books began to appear 

[Zienkiewicz (1971), Strang and Fix (1973)]. However, learning the method from Zienkiewicz’ 

book was not easy for one unfamiliar with structural mechanics. Most of the early applications 

in structural mechanics were linear steady state problems which could be treated with the 

Rayleigh-Ritz method. The success of the method in structural mechanics lead to an interest in 

other application areas. Many of these areas, such as fluid mechanics and flow in porous 

media are nonlinear and time dependent. The numerical integration methods used with finite 

elements are calculation intensive. The simplicity of collocation-like methods seemed like an 

obvious improvement for such problems. 

Lanczos (1956) and Villadsen and Stewart (1967) considered only global approximations. 

However, Villadsen and Stewart’s idea of collocating at quadrature points was soon used to 

extend OC for use with finite elements. First and most popular is collocation at Gauss points 

with early articles by DeBoor and Swartz (1973), Douglas and Dupont (1973), and Carey and 

Finlayson (1975). Finite element collocation at Gauss points is a method with continuous 

derivatives (C1 continuity) at element interfaces. Several texts are available which describe the 

method [Davis (1984), Lapidus and Pinder (1999), Finlayson (2003)]. 

Collocation at Lobatto points extends to a finite element method with simple C0 continuity. The 

Hybrid-Collocation-Galerkin method was developed first at Rice University by Henry Rachford, 

Mary Wheeler, Julio Diaz and others [Diaz (1975,1977), Dunn and Wheeler (1976), Wheeler 

(1977)]. About the same time, the Lobatto-Galerkin method was developed independently by 

three others [Gray (1977), Young (1977,1981), Hennart (1982)]. For many years, these two 

methods were considered different, but, in fact, they are equivalent [Young (2019)]. Leyk 

(1986,1997) appears to have developed the same method by reformulating the hybrid-

collocation-Galerkin method. Later, the method was developed yet again by Maday and Patera 

(1989) and popularized as the Spectral/hp Element method. Several texts and monographs 

describe the method [van de Vosse and Minev (1996), Canuto, et al. (2007), Karniadakis and 

Sherwood (2013)]. Apparently, Maday and Patera and the authors of these texts were 

unaware of all the earlier work as none of it is cited. Maday and Patera are credited with 

discovery of this popular method even though their work came more than a decade after its 

initial development. By our count, the method has been independently discovered or 

rediscovered five times. 

The chapter on finite element methods, includes additional discussion and examples of 

collocation-like finite element methods. 

1.2.10 Biographical Sketches. This section is not typical for a monograph like this, but its 

inclusion here seemed preferable to the use of short footnotes within the text or its placement 
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in an appendix that no one would read. It gives some brief biographical information on some of 

the pioneers in this field of study. It is noteworthy that so much of the original work was done at 

centers in Göttingen, Germany; St. Petersburg, Russia; and Kyiv, Ukraine. There was 

undoubtedly much exchange between these scholars which is not apparent from reading the 

sketches. It is remarkable that these people accomplished so much despite the turbulence of 

the early 20th century. Many received asylum in the United States, benefiting the US and the 

rest of the World. Unfortunately, Kravchuk is an exception. 

___________________________________________________________________________ 

John William Strutt, 3rd Baron Rayleigh (1842-1919) was 

British, born at Langford Grove in Maldon, Essex. He was a 

theoretical physicist at the University of Cambridge. He made 

many contributions to physics. His name is attached to many 

physical phenomena – Rayleigh waves, Rayleigh scattering, 

Rayleigh number, etc. Among numerous honors, he received the 

1904 Nobel Prize in Physics "for his investigations of the 

densities of the most important gases and for his discovery of 

argon in connection with these studies." Of interest here is his 

classic book The Theory of Sound (1877). In the book and other 

articles, he used a rudimentary form of the Rayleigh-Ritz method 

to estimate the principal eigenvalues or principal vibration modes 

of elastic strings, bars, membranes and plates. 

___________________________________________________________________________ 

Boris Grigoryevich Galerkin (1871-1945) (Gal’orkin) was a 

Russian engineer. He was born in Polotsk, Russian Empire, 

which is now in northern Belarus, near the border with Latvia. 

His family was of modest means, which made it difficult for him 

to obtain an education. At the age of 12 he worked as a 

calligrapher in the court. He finished secondary school in 

Polotsk but needed exams from an additional year in order to 

continue his education. He completed the exams at Minsk in 

1893 as a boarding student. He entered the mechanical 

department at St. Petersburg Technological Institute the same 

year. Due to his modest means he had to combine his 

education with work as a draftsman, and later by tutoring. He 

graduated in 1899. 

For three years, Galerkin worked at the Russian Mechanical and Steam-locomotive Union 

factory in Kharkov, and also taught short courses to other engineers. In 1903 he became an 

engineer on the construction of the Eastern-Chinese Railway. Later he became active in 

organizing a union of engineers in St. Petersburg. This led to his arrest in 1906 along with 18 

other members of Social-Democratic Party Committee, which later morphed into the 
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communist party. He was sentenced to prison for one and half years. After this experience, he 

became less interested in politics and decided to devote his efforts to science and engineering.  

He was released from prison in late 1908 and began teaching structural mechanics at the St. 

Petersburg Polytechnical Institute. There he became acquainted with other faculty members: 

V.L. Kirpichov, I.G. Bubnov, A.N. Krylov, I.V. Meshcherskiy, and S.P. Timoshenko.  He 

became involved in building construction and along with other faculty members visited other 

countries to study their building construction methods. He visited Germany, Austria, 

Switzerland, Belgium and Sweden. 

In 1915 he published his famous paper on the Galerkin method for solving boundary value 

problems. His colleagues Ivan Bubnov and Stepan Timoshenko had published papers using 

the Rayleigh-Ritz variational procedure. Galerkin’s method is an important generalization of the 

Rayleigh-Ritz method.  

In 1923 Galerkin became dean of the of the Polytechnical Institute civil engineering faculty. In 

1924 he made his last trip abroad to participate in the First International Congress on Applied 

Mechanics in the Netherlands. The conference was attended by most of the prominent 

academics of the time, and the name Methods of Weighted Residuals was born from Courant’s 

(1924) comments at the meeting. 

In later years, Galerkin was involved in all sorts of construction projects from hydro power 

projects to pulp and paper mills. He also received many honors, including election to 

headmaster of the USSR Academy of Sciences Institute of Mechanics. When World War II 

broke out in 1939 he was given the rank of Lieutenant-General, due to his position as head of 

the structural mechanics department of the military-construction school. The difficult work 

during the war took a toll on his health and he died in Moscow on July 12, 1945, just two 

months after VE day, ending the war in Europe. 

___________________________________________________________________________ 

Ivan Grigoryevich Bubnov (1872-1919) was a Russian born 

at Nizhny Novgorod, east of Moscow. He was a designer of 

ships and submarines for the Imperial Russian Navy. He 

graduated from the Marine Engineering College at Kronstadt 

in 1891 and the Nikolayev Marine Academy in 1896. In 1900, 

he was appointed Chief Assistant at the Russian Admiralty. 

He was involved in the design of the first Russian submarine, 

the Delfin, and also designed many later submarines. From 

1904 he taught at St. Petersburg Polytechnical Institute, 

where he was a colleague of Stepan Timoshenko and Ivan 

Galerkin. He moved to the Naval Academy in 1910. He 

published many fundamental works describing for the first 

time the stresses on the hulls of ships due to water pressure. He adopted the Rayleigh-Ritz 

variational method for studying these problems [Bubnov, 1913,1914]. He died from typhoid in 

1919 in Petrograd. 
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___________________________________________________________________________ 

Walther Ritz (1878-1909) (Walter) was a theoretical 

physicist. He was born in Sion Switzerland in the Rhone 

Valley, the son of a well-known landscape artist, Raphael 

Ritz. He entered the Zurich Polytechnic ETH in 1897 and 

after three years left for Göttingen where he obtained his 

PhD in 1902 working on the theory of spectral series under 

Voldemar Voigt. In the company of his friend Paul Ehrenfest, 

he went next to Leyden to hear lectures by Lorentz. Ritz 

moved then to Bonn and then to Paris to work on infra-red 

spectra in Aimé Cotton’s laboratory. This was to be followed 

by a series of stays in various European physics centers, 

intertwined with visits in sanatoria where Ritz was trying to 

fight his worsening tuberculosis. About 1906 he lost hope of 

recovery, so Ritz decided to return to Germany and devote the remainder of his life to intense 

research, first in Tübingen and then Göttingen in 1908. His health continued to deteriorate, and 

he died July 1909 at the age of 31. 

___________________________________________________________________________ 

Stepan Prokofyevich Timoshenko (1878-1972) 

(Stephen) was born in the village of Shpotovka which is in 

the Chernigov Governorate of northern Ukraine near 

Belarus. It was part of the Czarist Russian empire at that 

time. He was the son of a serf who had been brought up in 

the home of a landowner. His father managed to receive 

an education as a land surveyor and eventually became a 

landowner. From 1889 to 1896 Stephen received his 

secondary education at a realschule1 in Romny, Ukraine. 

His university studies began at the St Petersburg Institute 

of Engineers Ways of Communication. After graduating in 

1901, he stayed on and taught for two more years.  

In 1903 he accepted a position as an instructor at the 

newly organized Saint Petersburg Polytechnical Institute. 

During the summers he traveled to Munich and Göttingen, 

Germany where he met many prominent scientists and 

engineers. He studied under Ludwig Prandtl at Göttingen during the 1904-05 school year. In 

1906 he was appointed to the Chair of Strengths of Materials at the Kyiv Polytechnic Institute 

in his native Ukraine. There he continued his studies of buckling using the Rayleigh-Ritz 

 
1 Many eastern European countries had different schools for different career paths – in a realschule one received 
a practical education, whereas a gymnasium was more theoretical to prepare the student for higher learning 
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variational procedure. This was probably the first use of the method outside of Germany and 

England. 

In 1911 in a protest over quotas for Jewish students, Timoshenko and two other department 

chairs were fired. Several other professors resigned in protest. So, he returned to St. 

Petersburg. He was awarded the D. I. Zhuravski prize of the St. Petersburg Ways of 

Communication Institute, which helped him make ends meet during his unemployment. Money 

from the prize allowed him to travel to Cambridge, England in 1912 to attend a mathematics 

congress where he met many notable English scholars. Later, he worked as a lecturer and 

then a Professor in the Electrotechnical Institute and the St Petersburg Institute of the 

Railways (1911–1917). In 1918 he returned to Kyiv to head the newly established Institute of 

Mechanics of the Ukrainian Academy of Sciences. These were the years of World War I and 

the Bolshevik revolution. The Germans, Bolheviks and Russian White Army moved back and 

forth across Ukraine. To protect himself and his family, they moved around, living in Crimea for 

a time.  

Timoshenko had remained in contact with many former students. In 1920, through those 

contacts he received a teaching position in the Applied Mathematics Department at the 

Polytechnic Institute in Zagreb, Croatia. His lectures were first given through a translator, but 

this destroyed his teaching style. Later, he gave the lectures in Russian with a little Croatian. 

These lectures were effective. During his two years in Zagreb he maintained contacts in 

Germany and England. As part of his study of English, he translated some of his papers and 

got them published through colleagues in England.  

His time in Zagreb ended abruptly in 1922 when he accepted an offer at an industrial firm in 

Philadelphia, Pennsylvania, USA. He later spent four years at Westinghouse Research 

Laboratory in Pittsburgh, Pennsylvania. However, he was born to teach. In 1927 he was 

offered a position at the University of Michigan. There his professional and teaching career 

blossomed. He soon had as many graduate students as he could handle and was involved 

with seminars and short courses which brought in speakers through his many connections 

abroad and in industry. In 1936 he moved to Stanford University. He retired in 1944 but 

remained in California, lecturing at Stanford while continuing his lifelong summer travels to 

Europe. 

In addition to his numerous honors, Timoshenko mentored almost 40 PhD students in the US 

alone and published more than 20 textbooks in all areas of engineering mechanics. His books 

are still in widespread use in as many as 36 different languages. He is regarded by many as 

“The Father of Applied Mechanics.”  Stephen Prokofyevitch Timoshenko died in 1972. 

__________________________________________________________________________ 
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Nikolaĭ Mitrofanovich Krylov (1879-1955) (not to be confused with 

V.I. Krylov or A.N. Krylov) was a Russian mathematical physicist 

who graduated from the St. Petersburg Institute of Mines in 1902. 

He was a professor there from 1912 to 1917 followed by a 

professorship at Crimea University until 1922. He was then 

appointed head of the mathematical physics department at the All 

Ukrainian Academy of Sciences in 1922. Krylov published more 

than 200 articles and books on mathematics and physics. These 

included an article first describing the method of moments [Krylov 

(1926)] and the first articles describing error estimates for the 

Rayleigh-Ritz method [Krylov (1931)]. He also published a book in 

1941 with N. Bogoliubov describing practical applications, which is available in English [Krylov 

and Bogoliubov (1943)]. 

___________________________________________________________________________ 

Richard Courant (1888-1972) was born into 

a Jewish family in Lublinitz, Germany, which 

is in Silesia. It is now Lubliniec, Poland in 

southern Poland near the border with the 

Czech Republic. The family moved to Glatz 

when he was three and to Breslau when he 

was nine. He attended school at the König-

Wilhelm Gymnasium. When Richard was 

fourteen, tragic circumstances caused his 

father to declare bankruptcy and later move to 

Berlin. Richard stayed on in Breslau and 

supported himself by tutoring. 

In 1905 Courant began taking courses at the University of Breslau. He started in physics, then 

switched to mathematics, but did not feel stimulated. Older students Otto Toeplitz and Ernst 

Hellinger had left Breslau for Göttingen. They influenced him to move there in 1907. He 

attended classes in mathematics and physics by Hilbert and Minkowski and became Hilbert’s 

assistant in 1908. Hilbert was heavily involved with analysis and Courant took to the subject 

with ease. He received his doctorate under Hilbert in 1910 and after his compulsory military 

service did a habilitation (a type of postdoc) under Hilbert as well. 

He was drafted when World War I broke out. Although he avoided the worst of combat, he was 

wounded. After the war, he returned to Göttingen. Having divorced his first wife, he married 

Nerina Runge, daughter of Carl Runge, in 1919. The years following the war were ones of 

intense research. He founded the Mathematics Institute in 1922 and published a book on 

function theory and in 1924 published the classic text Methods of Mathematical Physics with 

Hilbert. Also, in 1924 at the First International Congress on Applied Mechanics in Delft, 
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Netherlands, his comments at the conference led to the name Methods of Weighted Residuals 

[Courant (1924)]. 

A new building for the Mathematics Institute was dedicated in 1929. However, in 1933 Courant 

was forced from his position by the Nazis, despite his service in World War I. He landed at 

New York University. The first few years there were difficult, but he was eventually given the 

task to build up a mathematics center. Courant was enthusiastic about building a center in his 

newly adopted country. However, he often encountered resistance due to his background as a 

foreigner and a Jew. He succeeded in building a center modeled after the one at Göttingen. He 

also snapped up many excellent scholars, such as Kurt Friedrichs, who were forced out of 

Germany by the Nazis. Those he could not place at NYU, he helped find other positions in the 

United States. 

In 1943 he published a paper [Courant 1943] of a lecture at the American Mathematics 

Society. It included an appendix describing a finite element method. However, the paper used 

the name generalized finite difference method, provided no details and was largely overlooked. 

It had virtually no influence on development of the method, which did not begin until the mid-

1950s when computers were first available for calculations. His work was eventually 

rediscovered, and it is now considered the first description of a finite element method. 

His Institute of Mathematical Sciences at NYU was renamed the Courant Institute in 1964. He 

died following a stroke in 1972. 

___________________________________________________________________________ 

Robert Alexander Frazer (1891-1959) was an Englishman born in London. His father, Robert 

Watson Frazer, was principal secretary and librarian at the London Institute in Finsbury Circus. 

Robert, Jr. was born there where the family lived. Robert, Sr. was retired from the civil service 

in Madras (Chennai), India and was the author of four books on India and its history. Young 

Robert was an excellent scholar, winning several scholarships, including one to Pembroke 

College, Cambridge. He obtained a B.Sc first call honors degree in mathematics at London 

University in 1911.  

At Pembroke College Frazer was tutored by algebraist J.H. Grace and H.F. Baker, who was 

interested in the matrizant (systems of initial value equations). In 1930 he received a D.Sc. at 

University of London. Soon after receiving his B.Sc. degree, he joined the National Physical 

Laboratory, aeronautics section, Teddington. He spent his entire career there. He is best 

known for his studies of aircraft flutter and other dynamic issues using both calculations and 

wind tunnel experiments. He received many awards and honors during his career, including 

receiving the Rayleigh Prize and the Royal Aeronautical Society’s Silver Medal and election as 

a Fellow of the Royal Society. 

Frazer was an early proponent for the use of matrix methods in engineering calculations. 

Together with W.J. Duncan and A.R. Collar he published the monograph Elementary Matrices 

in 1938 [Frazer, et al. (1938)] which was a catalyst for and became a standard text on the use 

of matrix methods. His paper “Approximation to Functions and to the Solutions of Differential 
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Equations,” with W.P. Jones and S.W. Skan coined the name “collocation” method and 

through calculations compared it to the least squares and the Galerkin methods. Although their 

discovery was three years later than the earliest papers, it was developed independently, more 

readily available in the west and included thoroughly worked examples with comparisons to 

other methods.  

Frazer died in 1959 at the age of 68. 

 

Mykhailo Pylypovych Kravchuk (1892-1942) (Krawchuk, 

Krawtchouk) was born in the northwest Volyn Region of Ukraine, 

bordering Belarus and Poland. It was part of the Czarist Russian 

empire at that time. His father was a land surveyor. Mykhailo was a 

proud Ukrainian and probably the foremost Ukrainian 

mathematician of the 20th century. He entered the University at Kyiv 

in 1910 studying mathematics and physics, teaching after 1917. He 

endured many hardships following the Bolshevik revolution and the 

subsequent loss of Ukrainian independence in 1922, but despite 

the obstacles, rose to full professor in 1925. Kravchuk was involved 

in teaching mathematics at secondary and post-secondary levels 

and in the development of mathematics terminology for the 

Ukrainian language. 

Kravchuk’s mother was Polish 

and through her he became 

fluent in Ukrainian, Russian, 

Polish, French and German. He 

presented several papers at the 

1928 International Mathematics 

Congress held in Bologna, Italy. 

At the congress and in other 

travels he developed friendships 

with other prominent 

mathematicians such as D. 

Hilbert, J. Hadamard and F. 

Tricomi (see photo, Kravchuk 

seated in white pants). 

Kravchuk also corresponded with John V. Atanasoff (1903-1995), a professor of mathematics 

and physics at Iowa State University. Atanasoff obtained most of Kravchuk’s papers and had 

them translated into English. Unfortunately, these translations were never published in the 

open literature. They remain in obscurity at the Iowa State University archives. Atanasoff 

together with graduate student Clifford Berry built the ABC (Atanasoff-Berry-Computer) 

computer in the years 1937-1942. The ABC computer was declared the first electronic 
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computer in a famous 1971 patent infringement case between Sperry-Rand and Honeywell. 

This decision overturned an earlier one that upheld patents associated with the ENIAC 

computer. There has been much speculation about what influence Kravchuk’s work had on the 

ABC’s creation [Katchanovski (2004)]. Atanasoff had used the Rayleigh-Ritz method, a 3-term 

approximation calculated by hand, in 1930 for his PhD which studied the dielectric constant of 

Helium. He had interest in better methods for performing linear algebraic calculations 

[Atanasoff and Brandt (1936)]. Many design features of the ABC were for the purpose of 

solving linear algebra problems. It is the current author’s opinion that Atanasoff was motivated 

by the desire to perform high order MWR calculations, so Kravchuk’s influence on 

development of the ABC was indirect. 

Unfortunately, Kravchuk’s friendship with other mathematicians and physicists and his love of 

Ukraine became his undoing. In 1938, after years of public service as an educator and 

academician, he fell victim to Stalin’s purges. Many of his friends and colleagues turned on him 

(to save their own skin) and his correspondence with foreign academics was used as “proof” 

he was a spy. He was convicted and sent to a Gulag death camp in Siberia. He succumbed to 

the harsh treatment in 1942 at the age of 50. 

________________________________________________________________________ 

Cornelius Lanczos (1893-1974) was born in 

Székesfehérvár, Hungary. His family was of Jewish origin 

and his father was a lawyer. His original name was Kornél 

Löwy but when Hungarians reacted to German names it was 

changed to a more Hungarian form. He attended a Jewish 

elementary school and then entered the local Catholic 

secondary school (called a Gymnasium) run by the 

Cistercians.   

He graduated from the Gymnasium in 1910 and entered the 

University of Budapest in the fall. He was inspired by several 

professors there, including Eötvös in physics and Fejér in 

mathematics. After graduating in 1915, Lanczos was 

appointed an assistant at the Technical University of 

Budapest, while he worked on his doctorate. He completed 

his doctorate in 1921, entitled Relation of Maxwell's Aether 

Equations to Functional Theory. He sent a copy of his 

dissertation to Einstein, who was impressed by his “sound and original thinking.” 

After graduation, he found the opportunities in Hungary were limited by prejudicial laws against 

Jews, so he took employment in Germany. First at Freiburg in extreme southwest Germany, 

then later in Frankfurt and Berlin. He spent the year 1928-29 as an assistant to Einstein in 

Berlin. He and Einstein became good friends and corresponded for years afterward. He spent 

1931 on a sabbatical at Purdue University in the United States and upon his return to Germany 

found the treatment of Jews had become intolerable. Fortunately, he was offered a 
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professorship at Purdue starting in 1932. In 1944 he took employment at the Boeing Aircraft 

Company and in 1949 moved to the Institute for Numerical Analysis at the National Bureau of 

Standards in Los Angeles. At the Bureau of Standards he adapted many of his numerical 

methods for the digital computer. In 1952 he accepted a position as head of the Theoretical 

Physics Department at the Dublin Institute for Advanced Studies in Ireland. In Ireland he finally 

had a position which offered him the support and opportunity to pursue his first love, the theory 

of relativity. This period was also the most productive of his career. Of the more than 120 

articles and books he published, about half were produced while he was in Ireland.  

He was the first to propose collocation at the roots of orthogonal polynomials, section 1.2.5, 

which he called the method of selected points. He also originated the tau method, section 

1.2.7, which is equivalent to the method of moments. Although he does not normally receive 

credit, he was first to describe the fast Fourier Transform (FFT), and the basis for the Golub 

and Welch (1969) eigenvalue method for roots of orthogonal polynomials. These are 

extraordinary achievements, especially considering his passions were elsewhere. 

On a visit to Budapest and 1974, he had a sudden heart attack and died the next day. 

________________________________________________________________________ 

Leonid Vital'evich Kantorovich (1912-1986) was born in St. 

Petersburg, Russia. His father, Vitaliy Moiseevich Kantorovich, 

was a prominent medical doctor specializing in the treatment of 

sexually transmitted diseases. One of the earliest events to 

impact young Leonid was the upheaval accompanying the 

Bolshevik revolution in 1917-20. For safety, the family fled to 

Belarus (then known as Byelorussia) for a period. 

Kantorovich was truly a child prodigy, developing an interest in 

science and mathematics at an early age. He entered Leningrad 

State University at the age of 14. Amongst his classmates were 

Sergei Lvovich Sobolev, Solomon Grigor'evich Michlin, Dmitrii 

Konstantinovich Faddeev and Vera Nikolaevna Zamyatin (later 

known as Vera Nikolaevna Faddeeva), all had a major impact on the field of mathematics. He 

graduated with the equivalent of a doctorate in 1930 at the age of 18. Afterward he continued 

at Leningrad State University and held research positions in various departments, including the 

Research Institute of Mathematics and Mechanics and the Department of Numerical 

Mathematics. Some of his students refused to believe the 20 year old youngster could be their 

lecturer.  

During this period he began to study variational calculus and in 1933 published his first book 

Calculus of Variations coauthored with Vladimir Ivanovich Krylov and Vladimir Ivanovich 

Smirnov. He presented two papers at the 1934 Second All-Union Mathematical Congress in 

Leningrad, including the first paper to describe the collocation method [Kantorovich (1934)], 

which he called the interpolation method. This obscure article was largely unnoticed in the 

west. In the 1930s functional analysis was heavily studied and Kantorovich made significant 
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contributions in this area. For our area of interest here, his greatest influence was through two 

books Approximate Methods in Higher Analysis with Vladimir Ivanovich Krylov (1936 1st 

edition, 1950 Russian, 1958 English) and Functional Analysis in Normed Spaces with G.P. 

Akilov (1959 Russian, 1964 English). 

Interestingly, Kantorovich’s received his greatest recognition in the field of economics. 

Although his training was exclusively in mathematics, he seemed to have an excellent 

common sense understanding of practical problems in economics. He got into the study of 

economics and operations research almost by accident in 1938 when approached to help 

determine the most effective allocation of machines in the production plywood. Problems of 

this type lead to his discovery of linear programming. He was awarded the 1975 Nobel Prize in 

economics. He contracted cancer and died in 1986. 

1.3 A First Example 

As a first example, consider diffusion or conduction through a slab or wall, with a temperature 

dependent thermal conductivity or concentration dependent diffusion coefficient. The problem 

has been discussed by others [Finlayson (1972), pp. 16-19, Bert and Malik (1996)]. The 

governing equation for the problem is:   

 𝑑

𝑑𝑥
(𝑘(𝑢)

𝑑𝑢

𝑑𝑥
) = −

𝑑𝑞

𝑑𝑥
 = 0 (1.17)  

with k(u) = 1 + u and the flux 𝑞 = −𝑘(𝑢)𝑑𝑢 𝑑𝑥⁄ . Consider either Dirchlet conditions:   

 𝑢(0) = 𝑢̅0,   𝑢(1) = 𝑢̅1 (1.18)  

or conditions of the third kind also called a Robin or radiation condition:   

 
𝑘(𝑢)

𝑑𝑢

𝑑𝑥
|
𝑥=0

= 𝑏0[𝑢(0) − 𝑢̅0],    −𝑘(𝑢)
𝑑𝑢

𝑑𝑥
|
𝑥=1

= 𝑏1[𝑢(1) − 𝑢̅1] (1.19)  

We will describe various solutions to this problem with MWR. Only the approximation methods 

and their results are described. The actual mechanics of solving the resulting nonlinear 

algebraic problems is not discussed here, but many nonlinear problems are considered in the 

body of the monograph.  

The problem is easily solved analytically. For the case with ū0 = 0, ū1 = 1 and b0 = b1 = b, the 

exact solution is: 

 
𝑞 =  

−3𝑏

2𝑏 + 6
 and  

𝑢 =  √1 − (2 − 𝑞/𝑏)(𝑞/𝑏) − 2𝑞𝑥  −  1 

  

When b → ∞, the Dirichlet conditions result and 𝑢 =  √1 + 3𝑥 − 1, while the flux is constant at q 

= -1.5. MWR will produce the exact solution if it is contained within the trial solution. Since the 

exact solution is not normally available, a polynomial trial function is used. A suitable monomial 

type of trial solution is:  
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𝑢̃ = (1 − 𝑥) 𝑢̃(0) +  𝑥 𝑢̃(1) + 𝑥(1 − 𝑥)∑𝑐𝑖𝑥

(𝑖−1)

𝑛

𝑖=1

 (1.20)  

For Dirichlet boundary conditions, the boundary values are substituted, 𝑢̃(0) = 𝑢̅0,   𝑢̃(1) = 𝑢̅1, 

while for Robin conditions the boundary values are parameters determined during the 

calculation. Alternatively, a modal approximation can be constructed from shifted Legendre 

polynomials:   

 
𝑢̃ = (𝑃0 − 𝑃1)

𝑢̃(0)

2
+ (𝑃0 + 𝑃1)

𝑢̃(1)

2
+ ∑ 𝑑𝑖(𝑃𝑖−1 − 𝑃𝑖+1)

𝑛

𝑖=1

 (1.21)  

The shifted polynomials are defined for the interval [0,1] instead of the usual interval of [-1,1]. 

The properties of Legendre polynomials are detailed in Chapter 2. Eq. (1.21) uses the 

following properties of the shifted polynomials:   

 𝑃0 =  1,  𝑃1 = 2𝑥 − 1,   𝑃𝑖(1) = 1  and  𝑃𝑖(0) = (−1)𝑖   

A nodal trial solution is given by Eq. (1.3), where the 𝒙 = {0, 𝑥1, … 𝑥𝑛 , 1}. The first and last nodal 

values are the boundary values and the internal nodes will usually be roots of an orthogonal 

polynomial. For a given n and method, the same or equivalent results are obtained regardless 

of the choice of representation, but of course the results are in a different form. Transforms to 

convert from one form to another are discussed later in Chapter 2. 

First, consider a two-term approximation and Dirichlet boundary conditions with ū0 = 0, ū1 = 1. 

For convenience omit the tilde (~) to designate the approximation. Substitution of the trial 

function, gives the following approximation for the flux:    

 
−𝑞 = (1 + 𝑢)

𝑑𝑢

𝑑𝑥
=  [1 + 𝑥 + 𝑥(1 − 𝑥)(𝑐1 + 𝑐2𝑥)][1 + (1 − 2𝑥)𝑐1 + (2𝑥 − 3𝑥2)𝑐2]    

And the residual is:     

 
𝑅 = (1 + 𝑢)

𝑑2𝑢

𝑑𝑥2
+ (

𝑑𝑢

𝑑𝑥
)
2

 

    = −2[𝑐1 − (1 − 3𝑥)𝑐2] [1 + 𝑥 + 𝑥(1 − 𝑥)(𝑐1 + 𝑐2𝑥)] + [1 + (1 − 2𝑥)𝑐1 + (2𝑥 − 3𝑥2)𝑐2]
2  

  

The weighted residuals, Eq. (1.8), are then used to determine the coefficients, ci:   

 
∫ 𝑅(𝑥, 𝒄) 𝑤𝑗

1

0

= 0 (1.22)  

for j = 1, …, n. The weight functions are as discussed in Section 1.2 above. The first moments 

and subdomain approximations weight the residual by unity, so the integral of the residual is 

set to zero. This case is also called the integral method. The Galerkin method weights the 

residual by the trial functions, while the least squares method minimizes the mean square 

residual. The collocation method sets the residual to zero at n points.   
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Tables 1.1 and 1.2 summarize the results for n = 1 and 2, while Figs. 1.9, 1.10 and 1.11 plot 

results for n = 2. For the collocation method, one must choose the location of the collocation 

points. For n = 1, the obvious choice is x = ½. For n = 2, four different choices were used: 

equally spaced points (⅓, ⅔), Chebyshev points (¼, ¾), and the base points of Gauss, 

(1 ± √1 3⁄ ) 2⁄ , and Lobatto, (1 ± √1 5⁄ ) 2⁄ , quadrature.  

Even with n = 1, the error in the solution is at most only a few percent, but the error in the flux 

is considerably greater. When n = 2, the results are much more accurate. Note that the results 

for collocation at Gauss points tend to track those for the method of moments. The results for 

Table 1.2 Nonlinear Conduction Problem, n = 2 

Method w1 w2 c1 c2 u(½) -q(0) -q(1) 
error 

u(½) 
error 

q(0) 
error 

q(1) 

moments 1 x 0.50000 -0.25000 0.59375 1.5 1.5 2.17% 0.00% 0.00% 

Galerkin† (1 − 𝑥)𝑥 (1 − x)x2 0.44059 -0.21518 0.58325 1.44059 1.54917 0.36% 3.96% 3.28% 

Least Sq. 𝜕𝑅 𝜕𝑐1⁄  𝜕𝑅 𝜕𝑐2⁄  0.43134 -0.18727 0.58443 1.43134 1.51186 0.57% 4.58% 0.79% 

collocation δ(x - ⅓) δ(x - ⅔) 0.40761 -0.19165 0.57795 1.40762 1.56803 0.55% 6.16% 4.54% 

Lobatto† δ(x-0.276) δ(x-0.724) 0.43526 -0.20622 0.58304 1.43526 1.54193 0.33% 4.32% 2.80% 

Chebyshev δ(x - ¼) δ(x - ¾) 0.45317 -0.21572 0.58633 1.45317 1.52510 0.89% 3.12% 1.67% 

Gauss δ(x-0.211) δ(x-0.789) 0.48805 -0.23437 0.59272 1.48805 1.49263 1.99% 0.80% 0.49% 

exact     0.58114 1.5 1.5    

 
†alternate calculation gives exact boundary flux for Galerkin method and Lobatto 

Table 1.1 Nonlinear Conduction Problem, n = 1 

Method w1 c1 u(½) -q(0) -q(1) 
error 

u(½) 
error 

q(0) 
error 

q(1) 

moments 1 0.33333 0.58333 1.33333 1.33333 0.38% 11.11% 11.11% 

Galerkin† (1 − 𝑥)𝑥 0.32624 0.58156 1.32624 1.34752 0.07% 11.58% 10.17% 

Least Squares 𝜕𝑅 𝜕𝑐1⁄  0.24948 0.56237 1.24948 1.50104 3.23% 16.70% 0.07% 

collocation† δ(x - ½) 0.31662 0.57916 1.31662 1.36675 0.34% 12.23% 8.88% 

exact 
  

0.58114 1.5 1.5 
   

†alternate calculation gives exact boundary flux for Galerkin method and collocation 
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collocation at Lobatto points are close to those for the Galerkin method. Later in the 

monograph we will discover why these methods tend to agree. Note also, the method of 

moments gives the exact endpoint fluxes for n > 1, but it has larger errors in the profile of u 

and q which should be constant at 1.5. Shortly, we describe a more accurate method for 

calculating endpoint fluxes for the Galerkin method.  

Fig. 1.12 shows the L2 errors versus n for the solution, u, the flux, q, and the residual, R. All 

these measures converge at an exponential rate, the values are reduced about an order of 

magnitude for each n until eventually roundoff errors become evident. The L2 residual errors 

are smallest with the method of moments, but errors for the solution and flux are somewhat 

smaller for the Galerkin method. The errors with collocation at Gauss and Lobatto points are 

not plotted, since they overlay those for the moments and Galerkin methods, respectively. 

Now consider a case with boundary conditions of the third kind. This type of condition would be 

used to simulate heat conduction through a slab surrounded by a fluid. Normally, the flux from 

the bulk fluid to the surface of the slab would be characterized with a heat transfer coefficient, 

so ū0 and ū1 in Eq. (1.19) represent the bulk fluid temperatures on the two sides of the slab. 

We will consider the case ū0 = 0, ū1 = 1 and b0 = b1 = b = 12. The analytical solution is: 

 −𝑞 = 1.2,    and 

𝑢 =  √1.21 + 2.4𝑥  −  1 
  

The nonlinearity of the boundary conditions complicates the construction of trial functions 

which meet the boundary conditions. As stated above, the form of the trial functions is 

somewhat a matter of convenience. To simplify the problem, we use Hermite cubic 

polynomials as trial functions:  

 𝑢̃ = ℎ0(𝑥)𝑢0 + ℎ̅0(𝑥)𝑢0
′ + ℎ1(𝑥)𝑢1 + ℎ̅1(𝑥)𝑢1

′  (1.23)  

where 𝑢0 = 𝑢̃(0), 𝑢0
′ =   𝑢̃′(0),𝑢1 = 𝑢̃(1),𝑢1

′ =   𝑢̃′(1), represent the values and derivatives of the 

solution at each end of the interval, giving four parameters to determine a cubic polynomial. 

The trial functions are the four Hermite cubic functions [Hildebrand (1987), p. 282]: 
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 ℎ0(𝑥) = (1 + 2𝑥)(1 − 𝑥)2 

ℎ̅0(𝑥) = 𝑥(1 − 𝑥)2 

ℎ1(𝑥) = (3 − 2𝑥)𝑥2 

ℎ̅1(𝑥) = (𝑥 − 1)𝑥2 

  

The boundary conditions reduce the free parameters by two, while weighted residuals are 

used to provide two additional conditions. The boundary conditions, Eq. (1.19), give the 

relationships:  

 
𝑢0

′ = 
𝑏 𝑢0

1 + 𝑢0
,    𝑢1

′ =
𝑏(1 − 𝑢1)

1 + 𝑢1
 (1.24)  

A trial solution which obeys the boundary conditions is:  

 
𝑢̃ = ℎ0(𝑥)𝑢0 + ℎ̅0(𝑥) (

𝑏 𝑢0

1 + 𝑢0
) + ℎ1(𝑥)𝑢1 + ℎ̅1(𝑥) (

𝑏(1 − 𝑢1)

1 + 𝑢1
) (1.25)  

The trial solution is substituted into the differential equation to construct the residual function 

and the two remaining free parameters (u0 and u1) are determined using two weighted residual 

conditions, Eq. (1.22).  

Table 1.3 lists results for several cubic approximations. The method of moments uses weights 

of 1 and x or two equivalent linear functions. For the collocation method the residual is set to 

zero at two points, four choices are listed. For the Galerkin method, the problem is complicated 

by the nonlinear dependence on the parameters in Eq. (1.25). For a Galerkin method which 

satisfies the boundary conditions exactly, the correct procedure is to weight the residual by 

𝜕𝑢̃ 𝜕𝑢0 and⁄ 𝜕𝑢̃ 𝜕𝑢1⁄ . This approach is messy, but with the Galerkin method there is a better 

way. 

As discussed in Section 1.2.8, boundary conditions involving fluxes are called natural 

boundary conditions. The Galerkin method does not require trial functions to satisfy these 

boundary conditions exactly. In fact, it is better to satisfy them approximately. This claim may 

seem counterintuitive, but by allowing a small error in the boundary condition, the method has 

more flexibility to adapt the polynomial to the solution. The tradeoffs can be visualized by 

Table 1.3 Nonlinear Conduction Problem, 3rd kind, b = 12, n = 2 

Method w1 w2 u(0) u(1) u(½) -q(0) -q(1) 
error 
u(½) 

error 
q(0) 

error 
q(1) 

Moments 1 x 0.1 0.9 0.55742 1.2 1.2 0.90% 0.00% 0.00% 

Galerkin (1 - x)x (1 - x)x2 0.1 0.9 0.55331 1.2 1.2 0.16% 0.00% 0.00% 

Lobatto weak δ(x-0.276) δ(x-0.724) 0.1 0.9 0.55334 1.2 1.2 0.17% 0.00% 0.00% 

collocation δ(x - ⅓) δ(x - ⅔) 0.09666 0.89755 0.54832 1.15992 1.22944 0.74% 3.34% 2.45% 

Lobatto δ(x-0.276) δ(x-0.724) 0.09778 0.89850 0.55155 1.17338 1.21802 0.16% 2.22% 1.50% 

Chebyshev δ(x - ¼) δ(x - ¾) 0.09848 0.89908 0.55354 1.18170 1.21100 0.20% 1.52% 0.92% 

Gauss δ(x-0.211) δ(x-0.789) 0.09975 0.90015 0.55718 1.19698 1.19815 0.86% 0.25% 0.15% 

exact   0.1 0.9 0.55242 1.2 1.2    
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comparing results for the method of moments with those of the Galerkin method. For Dirichlet 

conditions, Figs. 1.9 and 1.10 and Table 1.2 show that the method of moments gives exact 

boundary fluxes for the problem, but the errors in the profiles are greater than those for the 

other methods. Shortly, we show how to calculate exact boundary fluxes for this problem with 

the Galerkin method, so that it gives the best of both worlds, i.e. accurate profiles and accurate 

boundary fluxes. 

By using a natural treatment, the boundary conditions are incorporated into the approximation 

and are satisfied approximately, together with the differential equation. To develop the 

procedure, start again with the weighted residuals, Eq. (1.22), using trial functions which do not 

satisfy the boundary conditions. For simplicity, the monomial approximation, Eq. (1.20), is 

used, so the trial functions are: 𝝍(𝑥) = {1 − 𝑥,  𝑥, (1 − 𝑥)𝑥, (1 − 𝑥)𝑥2, ⋯ } and the parameters 

are: 𝒂 = {𝑢̃(0), 𝑢̃(1), 𝑐1, 𝑐2, ⋯ }. The weights in Eq. (1.22) are the trial functions, so the weighted 

residual conditions are:   

 
∑ 𝑎𝑘

𝑛+1

𝑘=0

∫
𝑑

𝑑𝑥
(𝑘(𝑢̃)

𝑑𝜓𝑘

𝑑𝑥
)  𝜓𝑗𝑑𝑥

1

0

= 0 (1.26)  

The equation is first integrated by parts to put it into its weak form:    

 
𝑘(𝑢̃)

𝑑𝑢̃

𝑑𝑥
𝜓𝑗|

0

1

− ∑ 𝑎𝑘

𝑛+1

𝑘=0

∫ 𝑘(𝑢̃)
𝑑𝜓𝑘

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥

1

0

𝑑𝑥 = 0 (1.27)  

The first term is the flux multiplied by the trial functions evaluated at the two boundaries. It 

simplifies since only the first trial function is nonzero at x = 0 and only the second one is 

nonzero at x = 1. The natural boundary condition treatment substitutes the boundary conditions 

for the fluxes. When the first two equations are written separately the following equations are 

to be solved:    

 
𝑏𝑎0 − ∑ 𝑎𝑘

𝑛+1

𝑘=0

∫ 𝑘(𝑢̃)
𝑑𝜓𝑘

𝑑𝑥

1

0

𝑑𝑥 = 0 

𝑏(𝑎1 − 1) + ∑ 𝑎𝑘

𝑛+1

𝑘=0

∫ 𝑘(𝑢̃)
𝑑𝜓𝑘

𝑑𝑥

1

0

𝑑𝑥 = 0 

∑ 𝑎𝑘

𝑛+1

𝑘=0

∫ 𝑘(𝑢̃)
𝑑𝜓𝑘

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥

1

0

𝑑𝑥 = 0  for 𝑗 = 2,… , 𝑛 + 1 

(1.28)  

Results for the Galerkin method are included in Table 1.3. We note that the boundary values of 

the solution are exact, so exact fluxes result when calculated by: −𝑞 = 𝑏𝑢̃(0) = 𝑏[1 − 𝑢̃(1)] or 

by Eq. (1.27). The error in u and the flux profiles are displayed in Figs. 1.13 and 1.14 together 

with results for other methods. We note that in Fig. 1.14 the boundary values of 𝑘(𝑢̃) 𝑑𝑢̃ 𝑑𝑥⁄  

are not exact, but nevertheless the method provides a means for calculating accurate 

boundary fluxes. 
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To understand this behavior, it is instructive to rewrite the equations in terms of the flux: 

 
𝑏 𝑢̃(0) + ∫ 𝑞

1

0

𝑑𝑥 = 0 

𝑏(𝑢̃(1) − 1) − ∫ 𝑞
1

0

𝑑𝑥 = 0 

∫ 𝑞
𝑑𝜓𝑗

𝑑𝑥

1

0

𝑑𝑥 = 0  for 𝑗 = 2,… , 𝑛 + 1 

(1.29)  

The first two conditions are used to approximate the boundary conditions, Eq, (1.19). The 

boundary values of the flux are replaced by the average flux – an excellent choice since it 

should be constant. The third condition then weights the residual toward zero, which weights 

the flux towards a constant value.  

Analytically, the exact flux for this problem is given by the equation:    

 
−𝑞 = ∫ 𝑘(𝑢)

𝑑𝑢

𝑑𝑥
𝑑𝑥

1

0

= ∫ 𝑘(𝑢)𝑑𝑢
𝑢(1)

𝑢(0)

 (1.30)  

Since this relationship is imbedded in the approximation, the average flux from the Galerkin 

method is the analytic value even when u is approximate. The method is approximate, so it 

cannot give a flux which is constant, but the average value is correct, and the flux approaches 

the correct constant value as n → ∞, and the boundary conditions also are satisfied in the limit. 

Like the results in Fig. 1.12, a plot of the L2 errors for this problem exhibits an exponential 

convergence rate. For large n, the choice of method makes little difference. 

Figs. 1.13 and 1.14 show that the Galerkin method gives more accurate profiles than the 

method of moments. The method of moments gives the correct values of u and q at the 

boundaries, fixing all four degrees of freedom for a cubic. Clearly, forcing correct boundary 

values causes the method of moments to produce larger errors in the internal profiles. The 
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Galerkin method provides a means for calculating the correct boundary values while producing 

more accurate internal profiles. 

When discussing the Dirichlet results above, we noted that collocation at Lobatto points 

produces results close to those of the Galerkin method. In the body of the monograph, Section 

3.1.3, we show that collocation at Lobatto points is equivalent to a Galerkin method with the 

integrals approximated by quadrature. For this reason, a weak form of the collocation method 

can be constructed. Table 1.3 and Fig. 1.13 show results for both the weak form of collocation 

at Lobatto points and the conventional method, where the boundary conditions are satisfied 

exactly, i.e. Eq. (1.25). When the boundary conditions are forced to be met, the internal profiles 

are thrown off and the boundary flux is only approximate. The weak form of collocation at 

Lobatto points produces results which are nearly identical to those of the Galerkin method, but 

it is much simpler to implement, especially for nonlinear problems like this one. 

As stated in Section 1.2.8, Dirichlet boundary conditions can be thought of as degenerate 

natural boundary conditions. This idea can be used to calculate more accurate boundary fluxes 

for the Galerkin method and collocation at Lobatto points. The exact flux is given by: −𝑞 =

𝑏 𝑢(0) = 𝑏[1 − 𝑢(1)]. Obviously, this equation cannot be used to calculate the flux as b → ∞, 

since the equation reduces to the product of zero and infinity. However, Eq. (1.29) can be used 

and it produces the exact boundary flux, even for n = 1. So, Tables 1.1 and 1.2 should be 

modified to reflect exact flux calculations for the Galerkin method and collocation at Lobatto 

points. 

Fluxes are important quantities in engineering calculations. This simple example of heat flux 

through a wall illustrates the various MWR and how accurate approximate solutions, including 

fluxes, can be calculated. Hopefully, this introduction will motivate a desire for a better 

understanding of the MWR and how they are implemented. Of special interest are the simpler 

collocation methods that produce accuracy on par with the more complex Galerkin and 

moments methods. 

1.4 Road Map to this Monograph 

The primary purpose of this monograph is to use examples to illustrate how to solve differential 

equations with MWR, especially collocation-like methods - Orthogonal Collocation, 

Pseudospectral and Differential Quadrature methods. We start with global approximations, 

using a single polynomial to approximate the solution. Later, we graduate to finite element 

methods. 

Chapter 2 describes the fundamental relationships and calculation methods which form the 

building blocks for MWR. The methods can be successfully applied to solve problems without 

a complete understanding of the material in this chapter. One may choose to initially scan this 

material and study the examples at the end of the chapter. Further study is warranted for those 

seeking a deeper understanding. The chapter describes orthogonal polynomials and 

interpolating polynomials, calculation of the polynomial roots or collocation points, quadrature 

weights, differentiation matrices for modal and nodal methods and methods for conversion 
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between the two representations. Computer codes are available to perform these calculations 

with Matlab/Octave, Python, Excel, Fortran 90+ and C++. Several examples demonstrate 

some of the basic calculations. Chapter 2 was originally envisioned as an appendix but grew to 

such proportions that it was elevated to a chapter. 

Chapter 3 treats two boundary value problems. The first is a diffusion problem with a source 

function and the second is a coupled convection dominated chemical reactor model. Several 

variations of these problems are covered: linear and nonlinear source, various boundary 

conditions, constant and variable coefficients, asymmetric and symmetric problems, various 

geometry, nodal and modal solutions. The problems are solved with collocation, Galerkin and 

moments methods. Flux calculations, the treatment of flux boundary conditions and mass 

conservation are analyzed. This chapter is fundamental to the later ones, since much of the 

material learned is applied to other more complex problems. 

Chapter 4 considers parabolic problems. The first one considered is the falling liquid film 

problem studied by Villadsen and Michelsen (1978, ch. 4). This problem is solved with the 

Galerkin method and with collocation using five different choices of collocation points. The no 

flux condition used at one boundary, provides an opportunity for further testing the treatment of 

flux boundary conditions. For this problem the first order derivative term is in the axial spatial 

coordinate, i.e. z, instead of time which is usually the case. The problem is solved both 

analytically in z and by various stepping methods, Runge-Kutta, etc. The consideration of both 

analytical and numerical solutions in z gives valuable insight into the performance of various 

stepping methods. (Nonlinear example to be added. Graetz problem) 

Chapter 5 applies the method to the hyperbolic wave equation to simulate springs in a model 

of an internal combustion engine valve train. 

Chapter 6 finite elements in one dimension – catalyst pellet problem, convective-diffusion 

problem, Buckley-Leverett and Burger equations. 

More to follow ……
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2. Fundamental Calculations 
The purpose of this chapter is to describe the methods used to calculate the basic quantities 

needed to implement Methods of Weighted Residuals (MWR), especially orthogonal 

collocation, which is also called the pseudospectral method and differential quadrature 

method. Complete knowledge of this material is not needed to apply the methods, since the 

codes provided can be used as a Black Box which provide the quantities needed to apply the 

methods. The reader may wish to scan this material initially, then use it as a reference and 

perhaps later study it in more detail. However, the software descriptions and example 

calculations at the end of the chapter are essential reading for anyone planning to apply these 

methods. 

In a collocation method, the selection of the collocation points is critically important. Once the 

points are selected, the method is basically specified, since the other parameters in the 

approximation can be calculated from the points. The orthogonal collocation method differs 

from an ordinary collocation method by using collocation points that are the roots of orthogonal 

polynomials.  The orthogonal polynomial roots all fall in the interior of the domain, so boundary 

points are added to facilitate the approximation of boundary conditions. 

Why use the roots of orthogonal polynomials?  They are selected because they form the basis 

of highly accurate numerical integration or quadrature methods. The accurate quadrature 

formulas produce a collocation method which closely approximates the accurate but more 

cumbersome integrated MWR, e.g Galerkin method or method of moments. With a collocation 

method, the residual is interpolated to zero. As with the interpolation of other functions, equally 

spaced and other choices of points can lead to the Runge (1901) phenomenon.  

A polynomial trial solution can be represented in several different ways, but in the absence of 

rounding errors, the solution is the same, regardless of the representation. Some early 

applications used simple monomials, xk. Alternatively, a modal basis of orthogonal 

polynomials, usually Chebyshev or Legendre polynomials, can be used, like Eqs. (1.2) or 

(1.21). To meet boundary conditions, the polynomials may be combined as in Eq. (1.21) or the 

coefficient can be required to meet side conditions.   

Some applications use a modal basis, but as explained in Chapter 1, many prefer a nodal 

basis, like Eq. (1.3), where the unknown coefficients are the values at the collocation points. A 

nodal basis is more intuitive and finite-difference-like.  The trial solution in this case are: 

 
𝑢(𝑥) ≈ ∑ ℓ𝑖(𝑥) 𝑢(𝑥𝑖)

𝑛+1

𝑖=0

 (2.1) 

where ℓi(x) are the Lagrange interpolating polynomials: 

 
ℓ𝑖(𝑥) = ∏

(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛+1

𝑗=0
𝑗≠𝑖

 =  
𝑝̂𝑛(𝑥)

(𝑥 − 𝑥𝑖)𝑝̂𝑛
′ (𝑥𝑖)

 =  
𝑝̂𝑛(𝑥)𝑊𝑖

𝑏

(𝑥 − 𝑥𝑖)
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and: 

 
 𝑝̂𝑛(𝑥) = ∏(𝑥 − 𝑥𝑗) 

𝑛+1

𝑗=0

 and  𝑝̂𝑛
′ (𝑥𝑖) =

𝑑𝑝̂𝑛(𝑥)

𝑑𝑥
|
𝑥𝑖

=  ∏(𝑥𝑖 − 𝑥𝑗)

𝑛+1

𝑗=0
𝑗≠𝑖

   

x0 and xn+1 are the boundary points, usually 0 and 1 or -1 and 1, while the interior points are the 

roots of orthogonal polynomials. The left definition of ℓi(x) above is the familiar one and the 

middle definition is called the fundamental form [Szegö (1975)].  

𝑊𝑖
𝑏 = 1/𝑝̂𝑛

′ (𝑥𝑖) are the so called barycentric weights. These quantities figure prominently 

throughout the fundamental calculations. Not only do they appear in the interpolation formula, 

but integration and differentiation relationships depend on the same quantities. Once the 

polynomial roots or collocation points are known and the barycentric weights calculated, the 

other quantities can be calculated easily.  

Many problems have solutions which are symmetric about a central point, x = 0. For a modal 

approach, one selects orthogonal polynomials which are symmetric, e.g. even numbered 

Legendre polynomials. With a nodal approach symmetric trial functions are: 

 
𝑢(𝑥2) ≈ ∑ ℓ𝑖(𝑥

2) 𝑢(𝑥𝑖)

𝑛+1

𝑖=1

 (2.2) 

where ℓi(x2) are Lagrange interpolating polynomials: 

 
ℓ𝑖(𝑥

2) = ∏
(𝑥2 − 𝑥𝑗

2)

(𝑥𝑖
2 − 𝑥𝑗

2)

𝑛+1

𝑗=1
𝑗≠𝑖

    

In these problems, the symmetry condition is the boundary condition, 𝑑𝑢 𝑑𝑥⁄ = 0 at 𝑥 = 0. 

Since this condition is satisfied by the trial functions, there is no need for a boundary point at 

the left end, so that point is dropped, and the remaining points are numbered from 1 to n + 1. 

The last point, xn+1 = 1, is used to satisfy a condition at the right boundary. 

Determining the trial functions used can sometimes be confusing. For example, many texts 

and articles state the trial functions are orthogonal polynomials, but then monomials are used 

and transformations are applied to produce a nodal formulation. In this monograph, the 

approximations are developed directly using a nodal basis throughout. Although a nodal basis 

is used almost exclusively, a few simple examples use a modal approach in order to give a 

flavor for the differences between nodal and modal trial functions. 

It is frequently stated that these methods are successful due to the orthogonality of modal trial 

functions. However, it is not the trial functions, but the residual weighting criteria, i.e. the wk in 

Eq. (1.9), which determines the accuracy and convergence properties. There are simple linear 

transforms that convert from one representation to another – modal, nodal or monomial. The 

transforms discussed in Sections 2.9 and 2.10 and examples in later chapters show that for a 
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given weighting criteria, e.g. Galerkin or moments, the results are identical regardless of the 

trial function representation.  

To apply MWR solution methods, we must be able to calculate various derivatives of the trial 

functions. For the integrated MWR described in Chapter 1, i.e. Galerkin and moments 

methods, integration is obviously important. Collocation does not require integration per se and 

some developments of these methods pay little attention to it. However, integration also plays 

a key role in efficient collocation methods, so the application of all MWR requires techniques 

for integrating and differentiating quantities involving the trial functions, whether nodal or 

modal. The purpose of this chapter is to develop the relationships and methods needed to 

calculate these quantities. 

Since the nodes in Eq. (2.1) consist of the roots of an orthogonal polynomial together with the 

endpoints, the orthogonal polynomial is related by: 

   𝑝̂𝑛(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥𝑛+1) 𝑝𝑛(𝑥) (2.3) 

where 𝑝𝑛(𝑥) is an orthogonal polynomial. Note that 𝑝𝑛(𝑥), ℓi(x) and 𝑝̂𝑛(𝑥) are degree n, n + 1 

and n + 2, respectively. All are monic polynomials, i.e. with leading coefficient of unity. Here 

we follow the convention that the monic form of an orthogonal polynomial is denoted by a 

lowercase p and the conventional form is in uppercase.  A hat (^) designates the inclusion of 

the endpoints.  

The values of the barycentric weights or 𝑝̂𝑛
′ (𝑥𝑖) can be determined by calculation of the 

continued products in Eq. (2.1) or directly from the monic orthogonal polynomials, by 

differentiation of Eq. (2.3): 

 1 𝑊𝑖
𝑏⁄ = 𝑝̂𝑛

′ (𝑥𝑖) = (𝑥𝑖 − 𝑥0)(𝑥𝑖 − 𝑥𝑛+1) 𝑝𝑛
′ (𝑥𝑖)   for  𝑖 = 1,… , 𝑛 

1 𝑊0
𝑏⁄ = 𝑝̂𝑛

′ (𝑥0) = (𝑥0 − 𝑥𝑛+1)𝑝𝑛(𝑥0) 

1 𝑊𝑛+1
𝑏⁄ = 𝑝̂𝑛

′ (𝑥𝑛+1) = (𝑥𝑛+1 − 𝑥0)𝑝𝑛(𝑥𝑛+1) 

(2.4) 

Differentiation of Eq. (2.1) is straight forward, but integration is more of a problem. The 

integration formulas needed for nonsymmetric problems are of the form: 

 
∫ 𝑓(𝑥)𝑑𝑥

1

0

≅ ∑ 𝑓(𝑥𝑖)∫ ℓ𝑖(𝑥)
1

0

𝑑𝑥

𝑛+1

𝑖=0

= 𝑊0𝑓(0) + ∑ 𝑊𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

+ 𝑊𝑛+1𝑓(1)   or 

𝑊𝑖 =  ∫ ℓ𝑖(𝑥)
1

0

𝑑𝑥 

(2.5) 

The numerical integration formulas needed for symmetric problems are of the form:  

 
∫ 𝑓(𝑥2)𝑥𝛾𝑑𝑥

1

0

=
1

2
∫ 𝑓(𝜉)𝜉𝜅𝑑𝜉

1

0

≅
1

2
 ∑ 𝑓(𝜉𝑖)∫ ℓ𝑖(𝜉)

1

0

𝜉𝜅𝑑𝜉

𝑛+1

𝑖=1

= ∑ 𝑊𝑖𝑓(𝜉𝑖)

𝑛+1

𝑖=1

  or 

𝑊𝑖 =
1

2
∫ ℓ𝑖(𝜉)𝜉

𝜅𝑑𝜉 
1

0

 

(2.6) 
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where ξ = x2, γ = 0,1,2 and κ = (γ -1)/2, so κ = -½, 0, +½ for planar, cylindrical or spherical 

geometry. These are called interpolatory quadrature formulas, because the approximate 

integration can be derived by integration of the interpolant of the integrand. 

Kopal (1955) has a particularly clear and understandable introduction to numerical integration 

methods. Eq. (2.5) has a total of n+2 weights. In an equally spaced Newton-Cotes method, 

these free parameters can fit the coefficients of an n+1 degree polynomial to achieve exact 

integration. After one is familiar with Newton-Cotes quadrature, it seems almost unbelievable 

that it is possible to achieve almost twice the accuracy with a similar formula, i.e. 2n+1 

degrees. Take a moment to consider this possibility. Since, by definition, Eq. (2.5) includes the 

endpoints, there are 2n+2 free parameters, n+2 weights and n base points. We could use 

brute force and set up a system of equations to solve for the weights and basepoints to 

produce exact integrals through 2n+1 degrees. We would find that a solution is possible and 

except for the endpoints, all the base points are within the interval 0 < xi < 1. The result would 

be Lobatto quadrature which is described in Section 2.4.3. Lobatto quadrature is a close 

cousin of Gaussian quadrature. Gaussian quadrature achieves the highest accuracy, 2n-1 

degrees, for a given number of base points, so it minimizes the number of function evaluations, 

f(xi). It differs from Lobatto quadrature, because endpoint weights are not utilized, i.e. W0 = 

Wn+1 = 0. Radau quadrature is similar and utilized a weight at one endpoint to achieve 

accuracy of 2n degrees. Clenshaw-Curtis (1960) quadrature uses Chebyshev points as the 

quadrature base points. The points are not optimally located for these integrals, so like 

Newton-Cotes only an n+1 degree polynomial can be integrated exactly. 

This chapter on basic calculations is divided into several parts. To apply orthogonal 

collocation, pseudospectral or differential quadrature methods, one first needs the polynomial 

roots or quadrature base points, x. Section 2.1 describes basic properties of the orthogonal 

polynomials for which the roots are sought, while Section 2.3 discusses methods for 

calculating their roots. Section 2.2 covers differentiation of the orthogonal polynomials. 

Derivatives of the polynomials are needed for many purposes: quadrature and barycentric 

weights, iterative root calculation, nodal differentiation matrices, and MWR solutions with a 

modal basis. Section 2.4 describes calculation of quadrature and barycentric weights, i.e. W, 

Eqs. (2.5) and (2.6), and Wb, Eq. (2.1). For nodal approximations, the differentiation matrices 

for first and second derivatives are described in Section 2.5. Calculation of the related stiffness 

and mass matrices are discussed in Sections 2.6 and 2.7. Although this monograph uses 

nodal formulations, the relationship to other representations is described for completeness. 

Section 2.9 discusses transformations between modal and nodal bases, i.e. Eq. (1.2) vs (2.1), 

while Section 2.10 describes transforms from nodal to monomial bases. Section 2.11 

describes software to perform the fundamental calculations and outlines the coding style for all 

software in the project.  Several examples of interpolation, integration and differentiation 

calculations using supplied software and methods of this chapter are described in Section 

2.12. These last two sections are essential reading for anyone planning to apply these 

methods. 
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Detailed knowledge of how these various quantities are calculated is not essential for one to 

apply these methods. Formulas for the various quantities could be just written down and the 

computer codes can be used as a black box. However, background information is included 

here for those interested in a deeper understanding of the methods. We do not delve into the 

proofs and development of various formulas which are readily available elsewhere but state 

the results that are needed for our purposes and provide the applicable reference for details. 

For general references to the subject of orthogonal polynomials and quadrature the reader is 

directed to Hildebrand (1987) and Krylov (1962). 

2.1 Jacobi Polynomials 

Jacobi polynomials are a family of orthogonal polynomials which include all the polynomials of 

interest for solving nonperiodic problems on a finite interval. Orthogonal polynomials and 

quadrature formulas are conventionally based on the interval [-1,1], while the normal 

orthogonal collocation convention uses the more convenient interval [0,1]. On the interval [0,1] 

the polynomials are called shifted polynomials. The interval [-1,1] is used here for this 

fundamental development. Once the fundamental properties are established, the 

corresponding properties for the shifted polynomials are given. Any interval can be used with a 

suitable transformation. 

Jacobi polynomials are orthogonal with respect to a weight function with parameters α and β. 

For endpoints a and b they meet the orthogonality condition: 

 
∫ (𝑏 − 𝑥)𝛼(𝑥 − 𝑎)𝛽𝑃𝑛

(𝛼,𝛽)
(𝑥)𝑃𝑚

(𝛼,𝛽)
(𝑥)𝑑𝑥

𝑏

𝑎

= 𝜁𝑛
(𝛼,𝛽)

𝛿𝑛𝑚 (2.7) 

where by convention for a = -1 and b = 1: 

 
𝜁𝑛

(𝛼,𝛽)
=

2𝛼+𝛽+1 Γ(𝑛 + 𝛼 + 1) Γ(𝑛 + 𝛽 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1) Γ(𝑛 + 𝛼 + 𝛽 + 1) 𝑛!
  

Two cases of interest are 𝜁𝑛
(0,0)

= 2/(2𝑛 + 1) for Legendre polynomials and  𝜁𝑛
(1,1)

= 8(𝑛 +

1)/[(2𝑛 + 3)(𝑛 + 2)]. The requirement of orthogonality establishes the polynomials only within 

a multiplicative constant. Several conventions could be used to complete the specification. If 

orthonormality is required, the polynomial would be scaled so that ζn = 1. Alternatively, monic 

polynomials could be specified, where the coefficient of the highest order term is unity. The 

convention above is established from the endpoint condition given below in Eq. (2.11). The 

Legendre polynomials correspond to α = β = 0 and Chebyshev polynomials of the 2nd kind to α 

= β = ½. For the common case when α = β, the polynomials are called ultraspherical or 

Gegenbauer polynomials. Although Chebyshev polynomials are Jacobi polynomials, they are 

traditionally scaled differently. 

Orthogonal polynomials are closely tied to the theory of accurate quadrature methods. For Eq. 

(2.5), Gaussian quadrature gives the highest accuracy for a given number of quadrature base 

points. Consider a more general integration of the form: 
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∫ 𝑓(𝑥)𝜔(𝑥)𝑑𝑥

1

−1

= ∑𝑊𝑖
∗𝑓(𝑥𝑖)

𝑚

𝑖=1

 (2.8) 

where: 𝜔(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽. The optimal quadrature is Jacobi-Gauss quadrature, where 

the base points are the roots of the Jacobi polynomials 𝑃𝑚
(𝛼,𝛽)

. It can be proven that all the roots 

lie within the interval, -1 < x < 1. Jacobi-Gauss quadrature will produce exact integrals when 

f(x) is a polynomial of degree 2m-1.  

Eq. (2.8) can be used to develop most of the quadrature formulas of interest. Krylov (1962) 

shows that if some of the base points are prescribed and the others are determined for optimal 

accuracy; the weighting function in the orthogonal polynomial must be zero at the specified 

points. Lobatto quadrature includes both endpoints, so the weight function is made zero at 

both ends by taking α = β = 1. Lobatto quadrature interior base points are the roots of the 

corresponding Jacobi polynomials. As we shall see these points also correspond to the 

extrema for the Legendre polynomials. For symmetric problems if a weight for Eq. (2.6) is 

included at the endpoint x = 1 it is correctly called a Radau quadrature; however, these 

formulas correspond to the right half of Lobatto formulas, so we will call them Lobatto in all 

cases to simplify the terminology. For symmetric problems β must correspond to κ in Eq. (2.6). 

Taking these factors into account for symmetric and nonsymmetric problems of various 

geometry, Table 2.1 summarizes the specific Jacobi polynomials of interest for quadrature 

calculations. Nonsymmetric problems in cylindrical and spherical geometry are not considered 

because such problems make sense only if the other periodic angular coordinates are included 

and we do not consider periodic problems here. 

Note that the Chebyshev weight factors, α = β = -½ for the 1st kind and α = β = +½ for the 2nd 

kind, do not appear in Table 2.1. Their roots give optimal quadratures only for integrands 

involving radicals. If the weight 1/√1 − 𝑥2 is included in the integral, Chebyshev polynomials of 

first kind produce a Chebyshev-Gauss formula with no endpoint weights, while Chebyshev 

polynomials of the 2nd kind produce Chebyshev-Gauss-Lobatto quadrature with endpoint 

weights. One can define MWR which includes radicals in the weighting of the residual function, 

Eq. (1.9), but such methods are not considered here. The weights for Chebyshev-Gauss and 

Chebyshev-Gauss-Lobatto quadrature can be found in many texts [Krylov (1962), Canuto, et 

al. (1988)]. Chebyshev polynomials are considered in this monograph primarily because they 

are a popular choice due to their computational advantages when FFT (Fast Fourier 

Table 2.1 Weight Exponents for Jacobi Polynomials 

 Planar Cylindrical Spherical 

Nonsymmetric, Gauss α = 0, β = 0 n.a. n.a. 

Nonsymmetric, Lobatto α = 1, β = 1 n.a. n.a. 

Symmetric, Gauss α = 0, β = -½ α = 0, β = 0 α = 0, β = ½ 

Symmetric, Lobatto α = 1, β = -½ α = 1, β = 0 α = 1, β = ½ 
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Transform) calculations can be used. Unlike Chebyshev quadrature, the Clenshaw-Curtis 

(1960) quadrature described in Section 2.4.6 does not include the radical term. Since the base 

points are not optimally located for a unit weight, Clenshaw-Curtis quadrature does not achieve 

the same degree of accuracy as Gaussian-type quadratures. The quadrature formulas are 

compared for an example problem in Section 2.12. 

The Jacobi polynomials and their properties can be determined directly from Eq. (2.7). The first 

few Jacobi polynomials on [-1,1] are: 

 𝑃0
(𝛼,𝛽)

= 1, 

𝑃1
(𝛼,𝛽)

= 
1

2
 (𝛼 + 𝛽 + 2)𝑥 +

1

2
 (𝛼 − 𝛽) 

𝑃2
(𝛼,𝛽)

=
1

8
 [(3 + 𝛼 + 𝛽)(4 + 𝛼 + 𝛽)𝑥2 +  2(3 + 𝛼 + 𝛽)(𝛼 − 𝛽)𝑥  

+ (4 + 𝛼 + 𝛽) + (𝛼 − 𝛽)2] 

(2.9) 

The polynomials are designated with superscript (α,β) when needed to avoid ambiguity. For 

Legendre or generic polynomials or when the meaning is obvious no superscript is used. 

When α = β the ultraspherical polynomials are alternately odd and even or symmetric and 

antisymmetric about x = 0.  

The polynomials possess the following symmetry: 

 𝑃𝑛
(𝛼,𝛽)

(−𝑥) = (−1)𝑛𝑃𝑛
(𝛽,𝛼)

(𝑥) (2.10) 

The endpoints for the conventional form of the polynomials are: 

  
 𝑃𝑛

(𝛼,𝛽)(1) =
Γ(𝑛 + 𝛼 + 1)

𝑛! Γ(𝛼 + 1)
      and 

 𝑃𝑛
(𝛼,𝛽)(−1) = (−1)𝑛

Γ(𝑛 + 𝛽 + 1)

𝑛! Γ(𝛽 + 1)
 

(2.11) 

The endpoint values in Eq. (2.11) establish the convention by which the formula for ζ is 

determined in Eq. (2.7). For Legendre polynomials, the values at x = 1 are unity and are 

alternating ±1 at x = -1. For the Jacobi α = β = 1 polynomials they are n + 1 at x = 1 and 

alternating ±(n + 1) at x = -1. Chebyshev polynomials of the first kind are traditionally scaled to 

have endpoint and extrema values of ±1; however, for the Jacobi scaling in Eq. (2.11), the 

absolute value at the endpoints are 𝑃𝑛

(
−1
   2

,
−1

   2
)
(1) = Γ(𝑛 + 1

2
) [√𝜋 Γ(𝑛 + 1)]⁄  = {1,½,⅜,5 16⁄ , 35

128⁄ , …}. 

Chebyshev polynomials of the second kind traditionally have endpoints of ± (n + 1), while with 

Jacobi scaling 𝑃𝑛

(
1

2
, 
1

2
)
(1) = (2𝑛 + 1)𝑃𝑛

(
−1
  2

,
−1

  2
)
(1) = {1,1½,1⅞,2 9

48⁄ , …}.  

The polynomials can be expanded as linear combination of monomials like Eq. (2.9), but for 

the higher order polynomials the coefficients become large with alternating signs. If used for 

calculations in that form roundoff errors soon become important. There is a better way to 

evaluate the polynomials. 
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The orthogonality condition, Eq. (2.7), can be used to develop a simple recurrence 

relationship. Dropping the superscript (α,β) for convenience. The recurrence formula for the 

monic form is: 

 𝑝𝑛+1 = (𝑥 − 𝛼̂𝑛)𝑝𝑛 − 𝛽̂𝑛𝑝𝑛−1 (2.12) 

First define 𝑝0 = 1, 𝑝−1 = 0, and 𝛽̂0 = ∫ 𝜔(𝑥) 𝑑𝑥
1

−1
, then the other parameters are: 

 
𝛼̂𝑛 =

∫ 𝑝𝑛
2  𝑥 𝜔(𝑥)𝑑𝑥

1

−1

∫ 𝑝𝑛
2  𝜔(𝑥)𝑑𝑥

1

−1

 =
𝛽2 − 𝛼2

(2𝑛 + 𝛼 + 𝛽)(2𝑛 + 𝛼 + 𝛽 + 2)
       and 

𝛽̂𝑛 =
∫ 𝑝𝑛

2  𝜔(𝑥)𝑑𝑥
1

−1

∫ 𝑝𝑛−1
2  𝜔(𝑥)𝑑𝑥

1

−1

 =
4𝑛(𝑛 + 𝛼)(𝑛 + 𝛽)(𝑛 + 𝛼 + 𝛽)

(2𝑛 + 𝛼 + 𝛽)2[(2𝑛 + 𝛼 + 𝛽)2 − 1]
 

 

Eq. (2.12) can be derived directly from the orthogonality condition, Eq. (2.7), and from the fact 

that any polynomial can be expressed as a linear combination of orthogonal polynomials.  

Eq. (2.12) is the recurrence relationship for the monic polynomials. The leading coefficients for 

the conventional form in Eq. (2.7) are:  

 𝑃𝑛 = 𝜌𝑛𝑝𝑛 (2.13) 

Where ρn can be determined from: 

   
𝜁𝑛 = ∫ 𝜌𝑛

2  𝑝𝑛
2  𝜔(𝑥)𝑑𝑥

1

−1

= 𝜌𝑛
2 ∏𝛽̂𝑘

𝑛

𝑘=0

 (2.14) 

For the convention given in Eq. (2.7), the leading coefficients are: 

 
 𝜌𝑛 = 

Γ(2𝑛 + 𝛼 + 𝛽 + 1)

2𝑛𝑛! Γ(𝑛 + 𝛼 + 𝛽 + 1)
 (2.15) 

A recurrence relationship for the conventional form of the Jacobi polynomials can easily be 

determined from the expressions above: 

 𝑃𝑛+1 = [𝛾𝑛𝑥 − 𝛼̌𝑛]𝑃𝑛 − 𝛽̌𝑛𝑃𝑛−1 (2.16) 

where the three coefficients in the recurrence relation are: 

 
𝛼̌𝑛 = 𝛼̂𝑛

𝜌𝑛+1

𝜌𝑛
=

(𝛽2 − 𝛼2)(2𝑛 + 𝛼 + 𝛽 + 1)

2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽)
 

𝛽̌𝑛 = 𝛽̂𝑛

𝜌𝑛+1

𝜌𝑛−1
=

(𝑛 + 𝛼)(𝑛 + 𝛽)(2𝑛 + 𝛼 + 𝛽 + 2)

(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽)
 

𝛾𝑛 = 
𝜌𝑛+1

𝜌𝑛
= 

(2𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽 + 2)

2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)
 

 

These equations are for polynomials on the interval [-1,1]. They can be converted to the 

interval [0,1], which is more convenient and has become the standard for orthogonal 
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collocation applications. These are called shifted polynomials. Using a tilde (~) to designate the 

corresponding values for shifted polynomials, the parameters are: 

 𝜁𝑛
(𝛼,𝛽)

= 𝜁𝑛
(𝛼,𝛽)

(2𝛼+𝛽+1⁄ ) 

𝜌̃𝑛
(𝛼,𝛽)

= (2𝑛)𝜌𝑛
(𝛼,𝛽)

 

𝛼̃𝑛
(𝛼,𝛽)

=
1

2
(1 + 𝛼̂𝑛

(𝛼,𝛽)
) 

𝛽̃𝑛
(𝛼,𝛽)

=
1

4
 𝛽̂𝑛

(𝛼,𝛽)
 

(2.17) 

Fig. 2.1 shows some examples of 

5th and 6th order Jacobi 

polynomials. Note that the 

polynomials tend to look like sine or 

cosine curves in the middle of the 

interval but are compressed near 

the boundaries. Note also that the 

endpoints of the polynomials agree 

with Eq. (2.11) (although the scale 

cuts off the extreme portions). 𝑃6
(1,0)

 

is the only one shown which is not 

symmetric (or antisymmetric) about 

the center point. It also follows the 

Legendre polynomial near x = 0 

and the 𝑃6
(1,1)

 polynomial near x = 

1. Finally, note that the roots of 𝑃5
(1,1)

 coincide with the extrema of the Legendre polynomial. 

This last feature will be discussed shortly. 

Eq. (2.10) describes the symmetry/asymmetry characteristics of these polynomials, which is 

illustrated in Fig. 2.1. Many calculations use the ultraspherical polynomials, α = β. For some 

calculations, efficiency can be gained by exploiting the symmetry property. Consider the planar 

symmetric case in Table 2.1.  These polynomials correspond to the right half of the full 

polynomials that are even, e.g. the Legendre polynomial, P6, in Fig. 2.1. If, for example, we 

need all the roots, we could calculate the positive roots and then copy them to get the negative 

ones, but this would still involve calculations with the full polynomial. It is more efficient to work 

directly with polynomials in x2 which have half as many terms. 

Table 2.1 hints at an equivalence between the symmetric and nonsymmetric polynomials. For 

example, the roots and quadrature weights for symmetric planar geometry on the interval [0,1] 

should correspond to values with α = β on the interval [-1,1]. The symmetric polynomials 

having the same value of α but with β = -½ are designated by S. The equivalence between the 

polynomials is [Olver et. al (2018), 18.7.13-14]: 

x

P
n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

0

1

2

Legendre, P
6

Jacobi(1,1), P
5

Jacobi(1,1), P
6

Jacobi(1,0), P
6

Fig. 2.1 Jacobi polynomials of 5
th

and 6
th

order
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𝑃2𝑛

(𝛼,𝛼)(𝑥) = 𝑎̃2𝑛𝑆𝑛

(𝛼,−
1
2
)
(𝜉) (2.18) 

Although the symbol, S, is used to distinguish the symmetric polynomials, they are just ordinary 

Jacobi polynomials. If both are defined on the interval [-1,1], the independent variables are 

related by 𝜉 = 2𝑥2 − 1. If we also use the conventional normalization which gives ζ as defined 

in Eq. (2.7), then the proportionality constant can be determine from the ratio of endpoint 

values, Eq. (2.11):  

 
 𝑎̃2𝑛 =

𝑃2𝑛
(𝛼,𝛼)(1)

𝑆𝑛

(𝛼,−
1
2
)
(1)

=
𝑛! Γ(2𝑛 + 𝛼 + 1)

(2𝑛)! Γ(𝑛 + 𝛼 + 1)
   

For Legendre polynomials the endpoint values are unity, so 𝑎̃2𝑛 = 1, for the Lobatto case, α = β 

= 1, 𝑎̃2𝑛 = (2𝑛 + 1) (𝑛 + 1)⁄ . The proportionality constant for monic polynomials is simply the 

conversion of the leading coefficient for a shifted polynomial, Eq. (2.17), i.e. 2-n. Given the 

roots of S, those of the corresponding ultraspherical polynomial are given by 𝒙 = √(1 + 𝝃)/2. 

The roots of S can be determined with fewer calculations, since there are not only half as many 

roots, but also half as many terms in the polynomial. We will refer to these as the shortcut 

polynomials. 

Eq. (2.18) gives the relationship between shortcut polynomials with the even numbered 

ultraspherical polynomials. Although not as straight forward as for even n, a similar 

relationship exists for odd n [Krylov (1962) pp 117-121]. An odd ultraspherical polynomial is 

antisymmetric about the center line, so there are an odd number of roots and one root is at the 

center, x = 0. Division by x creates a symmetric polynomial, which can be treated like the case 

when n is even. Suppose we define the symmetric polynomial, S, as follows: 

 
𝑆𝑛

(𝛼,+1
2
)
(𝑥) =

𝑃2𝑛+1
(𝛼,𝛼)

(√𝑥)

√𝑥
  or  𝑆𝑛

(𝛼,+1
2
)
(𝑥)𝑆𝑚

(𝛼,+1
2
)
(𝑥)√𝑥 =

𝑃2𝑛+1
(𝛼,𝛼)

(√𝑥)𝑃2𝑚+1
(𝛼,𝛼)

(√𝑥)

√𝑥
 (2.19) 

Dropping the superscripts for convenience, the relationship of their orthogonality is: 

 
∫ 𝑆𝑛(𝑥)

1

0

𝑆𝑚(𝑥)√𝑥 (1 − 𝑥)𝛼𝑑𝑥 

     = ∫ 𝑃2𝑛+1(√𝑥)
1

0

𝑃2𝑚+1(√𝑥)(1 − 𝑥)𝛼
𝑑𝑥

√𝑥
 

= 2∫ 𝑃2𝑛+1(𝜂)
1

−1

𝑃2𝑚+1(𝜂) (1 − 𝜂)𝛼(1 + 𝜂)𝛼𝑑𝜂 = 0 for 𝑚 ≠ 𝑛 

(2.20) 

where 𝜂 = √𝑥. So, the positive roots of P2n+1 (on [-1,1]) are the square root of the roots of 𝑆𝑛 

(on [0,1] with β = +½). The other roots are the corresponding negative ones and the one at x = 

0. The relationship above, proves proportionality of the two polynomials. To achieve an exact 

correspondence, a proportionality constant is determined from the endpoint values, Eq. (2.11). 
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𝑃2𝑛+1

(𝛼,𝛼)(𝑥) = 𝑎̃2𝑛+1𝑥 𝑆𝑛

(𝛼,+
1
2
)
(𝜉) (2.21) 

If  𝑆̂𝑛is defined on the interval [-1,1], 𝜉 = 2𝑥2 − 1 and the proportionality constant is: 

 
 𝑎̃2𝑛+1 =

𝑃2𝑛+1
(𝛼,𝛼)(1)

𝑆𝑛

(𝛼,+
1
2
)
(1)

=
𝑛! Γ(2𝑛 + 𝛼 + 2)

(2𝑛 + 1)! Γ(𝑛 + 𝛼 + 1)
   

For Legendre polynomials 𝑎̃2𝑛+1 = 1, while for the Lobatto case, α = β = 1, 𝑎̃2𝑛+1 = 2. If monic 

polynomials are used, the proportionality constant is 2-n.  

These shortcut polynomials are handy for reducing calculations for the ultraspherical 

polynomials. The degree and the number of coefficients is cut in half, so a polynomial value 

can be calculated with half the effort. They also provide an analytical expression for values of 

the even numbered polynomials at x = 0: 

 

𝑃2𝑛
(𝛼,𝛼)(0) = 𝑎̃2𝑛𝑆𝑛

(𝛼,−
1
2
)
(−1) = 𝑃2𝑛

(𝛼,𝛼)(1)
𝑆𝑛

(𝛼,−
1
2
)
(−1)

𝑆𝑛

(𝛼,−
1
2
)
(1)

 

= (−1)𝑛
Γ(𝑛 + 1

2
) Γ(2𝑛 + 𝛼 + 1)

√𝜋 (2𝑛)!  Γ(𝑛 + 𝛼 + 1)
 

(2.22) 

We also note that given this relationship between the polynomials, there are only three unique 

cases of interest in Table 2.1: (1) Gauss α = β = 0, (2) Lobatto α = β = 1 and (3) Radau α = 1, β 

= 0. The symmetric cases for planar and spherical geometry correspond to the shortcut 

representation for ultraspherical polynomials. 

From approximation theory, we know that for polynomial interpolation of a function, the error is 

proportional to the polynomial whose roots are at the interpolation nodes. Chebyshev 

polynomials of the 1st kind are the best ones for interpolation, because the extrema are uniform 

and the error is evenly distributed (Lanczos (1956), p.245; Hildebrand (1987) p. 469).  

In MWR our goal is to closely approximate the true solution. However, since the solution is not 

known, we instead make the residual of the differential equation as close to zero as possible. 

The residual in a collocation method will obey the same principals as in the interpolation of any 

function. However, a uniformly distributed error in the residual of a differential equation does 

not produce a uniform error in the solution. Lanczos (1956, p.477) shows for a simple first 

order differential equation, the dominant errors are shifted by the differential operator. Errors in 

the solution are less when the residual is proportional to Chebyshev polynomials of the 2nd kind 

or Legendre polynomials. Larger values of the α and β parameters tend to be better for MWR.  

In later chapters we will see that the distribution of the error is influenced by the distribution of 

the roots and the variation in the amplitude of the polynomial’s fluctuations. These 

characteristics are determined by the polynomial weight function, 𝜔(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽, and 

its value in the center region relative to the boundary area. Larger values of α and β decreases 

the magnitude of the weight near the boundary relative to the center. Table 2.2 lists the ratio of 
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center to endpoint values, calculated with 

Eqs (2.11) and (2.22), for four 

polynomials. These polynomials have 

increasing values of the weight 

parameters: (1) Chebyshev 1st kind, α = β 

= -½, (2) Legendre α = β = 0, (3) 

Chebyshev 2nd kind α = β = +½, and (4) 

Jacobi with α = β = 1 for Lobatto 

quadrature. Fig. 2.2 shows the right half 

of the same four polynomials for n = 8 

together with the locus of their extrema. The increasing α and β values emphasizes the central 

portion and concentrate the roots in that area. However, the boundary area is deemphasized, 

since values near the boundary are significantly larger. In Fig. 2.2 the Chebyshev polynomials 

are scaled like other Jacobi polynomials. What is important is the variation in x not the scaling. 

As an example of a Jacobi polynomial, consider the Legendre polynomials, α = β = 0. The 

recurrence relation and leading coefficients for the interval [-1,1] are: 

 𝛼̂𝑛 = 0 

𝛽̂𝑛 =
𝑛2

4𝑛2 − 1
 

𝜌𝑛 = 
(2n)!

2𝑛(𝑛!)2
 

𝜁𝑛 =
2

2𝑛 + 1
 

(2.23) 

x

P
n

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

Legendre/Gauss

Chebyshev 2
nd

Jacobi/Lobatto

extrema

extrema

Fig. 2.2 Polynomials and extrema for n = 8,  =  = -½, 0, +½, +1

Chebyshev 1
st

Table 2.2 Relative Boundary to Center 
Values 

n Chebyshev 

(-½,-½) 

Legendre 
(0,0) 

Chebyshev 

(+½,+½) 

Jacobi 
(1,1) 

2 1 2 3 4 

4 1 2.667 5 8 

6 1 3.200 7 12.80 

8 1 3.657 9 18.29 

10 1 4.063 11 24.38 
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The recurrence relationship for the monic form of the Legendre polynomials is then: 

 
𝑝𝑛+1 = 𝑥 𝑝𝑛 − (

𝑛2

4𝑛2 − 1
)𝑝𝑛−1 (2.24) 

While the recurrence relationship for the conventional form of the Legendre polynomials is 

given by: 

 
 𝑃𝑛+1 = (

2𝑛 + 1

𝑛 + 1
) 𝑥𝑃𝑛 − (

𝑛

𝑛 + 1
)𝑃𝑛−1 (2.25) 

The first few Legendre polynomials are: 

 
𝑃0 = 1,  𝑃1 = 𝑥,   𝑃2 =

1

2
(3𝑥2 − 1),   𝑃3 =

1

2
(5𝑥3 − 3𝑥) (2.26) 

2.2 Differentiation of Jacobi Polynomials  

Derivatives of the Jacobi polynomials are needed for many of the fundamental calculations. 

We have already seen that they appear as the barycentric weights, 𝑊𝑖
𝑏 = 1/𝑝̂𝑛

′ (𝑥𝑖), in the 

interpolation formula, Eq. (2.1). These same quantities appear in the integration formulas and 

nodal differentiation relationships. Derivatives are also needed when an iterative, e.g. Newton-

Raphson, method is used to determine roots as discussed in Section 2.3. 

Derivative relationships are needed when modal methods, i.e. orthogonal polynomial trial 

functions, are used with MWR. Although a nodal formulation is usually more convenient, 

occasionally orthogonal polynomial trial functions are used, Eq. (1.2), where the coefficients 

are analogous to the modes in a Fourier series. Here we describe some orthogonal polynomial 

relationships that are useful for a modal formulation with Jacobi polynomial basis functions.  

The most common modal basis functions are Chebyshev polynomials and Legendre 

polynomials. However, other types of Jacobi polynomials have been used. We will consider the 

general case but will emphasize the Legendre polynomials. Chebyshev basis functions are 

heavily covered elsewhere [Canuto, et al. (1988), Boyd (2000), Trefethen (2000), Shen, et al. 

(2011)]. All of the discussion here is for the interval [-1,1]. 

One interesting and useful property of Jacobi polynomials is: 

 
 
𝑑𝑃𝑛

(𝛼,𝛽)
(𝑥)

𝑑𝑥
=

1

2
(𝑛 + 𝛼 + 𝛽 + 1) 𝑃𝑛−1

(𝛼+1,𝛽+1)
(𝑥) (2.27) 

so the roots of the polynomial on the right corresponds to the extrema of the one indicated on 

the left. This relationship is apparent in Fig. 2.1. It explains why the Lobatto quadrature base 

points are often called the extrema of the Legendre polynomials.  They are also the roots of 

the Jacobi polynomials with α = β = 1. By the same token, the extrema of the Chebyshev 

polynomials of the 1st kind (α = β = -½) are the roots of the Chebyshev polynomials of the 2nd 

kind (α = β = +½). 

The derivatives at the boundaries are easily found by using Eq. (2.27) with Eq. (2.11) to give: 
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𝑑𝑃𝑛

(𝛼,𝛽)

𝑑𝑥
|

𝑥=+1

=
1

2
(𝑛 + 𝛼 + 𝛽 + 1) 

Γ(𝑛 + 𝛼 + 2)

𝑛! Γ(𝛼 + 2)
      and 

 
𝑑𝑃𝑛

(𝛼,𝛽)

𝑑𝑥
|

𝑥=−1

=
1

2
(𝑛 + 𝛼 + 𝛽 + 1) (−1)𝑛

Γ(𝑛 + 𝛽 + 2)

𝑛! Γ(𝛽 + 2)
 

(2.28) 

The derivative at the x = 1 are n(n+1)/2 for Legendre polynomials and n(n+1) (n+3)/4 for 

Jacobi polynomials with α = β = 1. 

Derivatives of the polynomials can be found by direct differentiation of the recurrence 

relationship, Eq. (2.16): 

 𝑃𝑛+1
′ = 𝛾𝑛𝑃𝑛 + [𝛾𝑛𝑥 − 𝛼̌𝑛]𝑃𝑛

′ − 𝛽̌𝑛𝑃𝑛−1
′  (2.29) 

where primes denote first derivatives.  

Derivatives of the ultraspherical polynomials, α = β, also can be calculated using the shortcut 

relationships given in Eqs. (2.18) and (2.21). Since 𝜉 = 2𝑥2 − 1, differentiation of these 

relationships for an even numbered polynomial gives: 

 
𝑑𝑃2𝑛

(𝛼,𝛼)(𝑥)

𝑑𝑥
= 2√2 𝑎̃2𝑛√1 + 𝜉  

𝑑𝑆𝑛

(𝛼,−
1
2
)
(𝜉)

𝑑𝜉
 (2.30) 

The derivative of an odd numbered polynomial is: 

 
𝑑𝑃2𝑛+1

(𝛼,𝛼)(𝑥)

𝑑𝑥
= 𝑎̃2𝑛+1 (𝑆𝑛

(𝛼,+
1
2
)
(𝜉) +  2(1 + 𝜉)

𝑑𝑆𝑛

(𝛼,+
1
2
)
(𝜉)

𝑑𝜉
) (2.31) 

Calculating a derivative of S requires less effort because the polynomials have half as many 

terms. 

Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville equation: 

 𝑑

𝑑𝑥
[(1 − 𝑥)𝛼+1(1 + 𝑥)𝛽+1

𝑑𝑃𝑘
(𝛼,𝛽)

𝑑𝑥
] + 𝑐́𝑘

(𝛼,𝛽)
(1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑃𝑘

(𝛼,𝛽)
= 0,   or 

(1 − 𝑥2)𝑃𝑘
(𝛼,𝛽)′′

− [𝛼 − 𝛽 + (𝛼 + 𝛽 + 2)𝑥]𝑃𝑘
(𝛼,𝛽)′

+ 𝑐́𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)

= 0,   or 

(1 − 𝑥2)𝑃𝑘
(𝛼,𝛽)′′

= [𝑎́(𝛼,𝛽) 𝑥 + 𝑏́(𝛼,𝛽)]𝑃𝑘
(𝛼,𝛽)′

− 𝑐́𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)

 

(2.32) 

where 𝑐́𝑘
(𝛼,𝛽)

= 𝑘(𝑘 + 𝛼 + 𝛽 + 1) are the eigenvalues. This equation is useful for calculating 

second and higher derivatives. Repeated differentiation of Eq. (2.32) produces the following 

recurrence relationship for higher derivatives:  

 (1 − 𝑥2)𝑃𝑘
(𝑖)

= (𝑎́𝑖 𝑥 + 𝑏́)𝑃𝑘
(𝑖−1)

− 𝑐́𝑘𝑖𝑃𝑘
(𝑖−2)

 (2.33) 
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where the (α,β) superscript has been omitted for convenience and replaced with (i) indicating 

the ith derivative. Starting with the coefficients in Eq. (2.32), those for the higher derivatives 

are: 

 𝑎́𝑖 = 𝑎́𝑖−1 + 2 

𝑐́𝑘𝑖 = 𝑐́𝑘,𝑖−1 − 𝑎́𝑖−1 
 

A simple relationship for determining first derivatives is:  

 (1 − 𝑥2)𝑃𝑘
(𝛼,𝛽)′

=  𝑐𝑘̅
(𝛼,𝛽)

𝑃𝑘−1
(𝛼,𝛽)

− 𝑏̅𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)

− 𝑎̅𝑘
(𝛼,𝛽)

𝑃𝑘+1
(𝛼,𝛽)

 (2.34) 

where the coefficients are: : 

 
𝑎̅𝑘

(𝛼,𝛽)
=

2𝑘(𝑘 + 1)(𝑘 + 𝛼 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽 + 1)(2𝑘 + 𝛼 + 𝛽 + 2)
 

𝑏̅𝑘
(𝛼,𝛽)

=
2𝑘(𝛽 − 𝛼)(𝑘 + 𝛼 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽)(2𝑘 + 𝛼 + 𝛽 + 2)
 

𝑐𝑘̅
(𝛼,𝛽)

= 
2(𝑘 + 𝛼)(𝑘 + 𝛽)(𝑘 + 𝛼 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽)(2𝑘 + 𝛼 + 𝛽 + 1)
 

 

The recurrence relationship, Eq. (2.16),  can be substituted for Pk+1 to give the expression:  

 (1 − 𝑥2)𝑃𝑘
(𝛼,𝛽)′

=  (𝑎̅𝑘
(𝛼,𝛽)

𝛽̌𝑘 + 𝑐𝑘̅
(𝛼,𝛽)

) 𝑃𝑘−1
(𝛼,𝛽)

− (𝑎̅𝑘
(𝛼,𝛽)[𝛾𝑘𝑥 − 𝛼̌𝑘] + 𝑏̅𝑘

(𝛼,𝛽)
) 𝑃𝑘

(𝛼,𝛽)
 

=  𝑐𝑘̌
(𝛼,𝛽)

𝑃𝑘−1
(𝛼,𝛽)

− (𝑎̌𝑘
(𝛼,𝛽)

𝑥 + 𝑏̌𝑘
(𝛼,𝛽)

) 𝑃𝑘
(𝛼,𝛽)

 
(2.35) 

Substituting values gives: 

 𝑎̌𝑘
(𝛼,𝛽)

= 𝑎̅𝑘
(𝛼,𝛽)

𝛾𝑘
(𝛼,𝛽)

= 𝑘 

𝑏̌𝑘
(𝛼,𝛽)

= 𝑏̅𝑘
(𝛼,𝛽)

− 𝑎̅𝑘
(𝛼,𝛽)

𝛼̌𝑘
(𝛼,𝛽)

=
𝑘(𝛽 − 𝛼)

(2𝑘 + 𝛼 + 𝛽)
 

𝑐𝑘̌
(𝛼,𝛽)

= 𝑐𝑘̅
(𝛼,𝛽)

+ 𝑎̅𝑘
(𝛼,𝛽)

𝛽̌𝑘
(𝛼,𝛽)

=
2(𝑘 + 𝛼)(𝑘 + 𝛽)

(2𝑘 + 𝛼 + 𝛽)
 

 

This expression is especially simple for calculating derivatives at the roots, since Pk drops out, 

but it may not be the best procedure. 

By virtue of Eq. (2.27), the derivatives of the polynomials also form an orthogonal set, with a 

recurrence relationship like Eq. (2.16). The recurrence relationship for the derivatives can be 

combined with Eq. (2.29) to yield the following:  

  𝑃𝑘
(𝛼,𝛽)

= 𝑎̿𝑘
(𝛼,𝛽)

𝑃𝑘+1
(𝛼,𝛽)′

− 𝑏̿𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)′

− 𝑐𝑘̿
(𝛼,𝛽)

𝑃𝑘−1
(𝛼,𝛽)′

 (2.36) 

where the primes again denote the first derivatives and: 

 
𝑎̿𝑘

(𝛼,𝛽)
=

2(𝑘 + 𝛼 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽 + 1)(2𝑘 + 𝛼 + 𝛽 + 2)
 

𝑏̿𝑘
(𝛼,𝛽)

=
2(𝛽 − 𝛼)

(2𝑘 + 𝛼 + 𝛽)(2𝑘 + 𝛼 + 𝛽 + 2)
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𝑐𝑘̿
(𝛼,𝛽)

=
2(𝑘 + 𝛼)(𝑘 + 𝛽)

(𝑘 + 𝛼 + 𝛽)(2𝑘 + 𝛼 + 𝛽)(2𝑘 + 𝛼 + 𝛽 + 1)
 

Eq. (2.36) can be solved for 𝑃𝑘+1
(𝛼,𝛽)′

 to give: 

  𝑃𝑘+1
(𝛼,𝛽)′

=  𝛼̅𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)′

+ 𝛽̅𝑘
(𝛼,𝛽)

𝑃𝑘−1
(𝛼,𝛽)′

+ 𝛾̅𝑘
(𝛼,𝛽)

𝑃𝑘
(𝛼,𝛽)

 (2.37) 

where the coefficients are conveniently expressed in terms of the recurrence coefficients of Eq. 

(2.16): 

 
𝛼̅𝑘

(𝛼,𝛽)
=

2(𝑘 + 1)

(𝛼 + 𝛽)
𝛼̌𝑘

(𝛼,𝛽)
 

𝛽̅𝑘
(𝛼,𝛽)

=
(𝑘 + 1)

(𝑘 + 𝛼 + 𝛽)
 𝛽̌𝑘

(𝛼,𝛽)
 

𝛾̅𝑘
(𝛼,𝛽)

= (𝑘 + 1) 𝛾𝑘
(𝛼,𝛽)

 

 

Eq. (2.37) and the expressions for the coefficients apply equally to the monic polynomials if the 

monic recurrence coefficients, 𝛼̂, 𝛽̂ defined in Eq. (2.12), are substituted above and if 𝛾𝑘 is 

replaced by unity. This expression simplifies for the ultraspherical polynomials (α = β), since 

𝛼̅𝑘
(𝛼,𝛽)

= 0. 

Eq. (2.37) can be used to determine a form which is useful for modal MWR applications. The 

right-hand-side terms are substituted recursively to calculate the coefficients of: 

 
 𝑃𝑛

(𝛼,𝛽)′
=  ∑ 𝑑𝑛𝑘

(𝛼,𝛽)

𝑛−1

𝑘=0

𝑃𝑘
(𝛼,𝛽)

 (2.38) 

This form is useful for modal MWR solutions, since derivatives are expressed in terms of the 

basic undifferentiated polynomials. For ultraspherical cases, α = β, alternate values of d are 

zero. 

The relationships above are most often used for Legendre polynomials. For the Legendre case 

the Sturm-Liouville relationship, Eq.(2.32), reduces to: 

 (1 − 𝑥2)𝑃𝑘
′′ − 2𝑥𝑃𝑘

′ + 𝑘(𝑘 + 1)𝑃𝑘 = 0 (2.39) 

The first derivative relationship, Eq. (2.34), reduces to: 

 
 (1 − 𝑥2)𝑃𝑘

′(𝑥) =
𝑘(𝑘 + 1)

2𝑘 + 1
(𝑃𝑘−1(𝑥) − 𝑃𝑘+1(𝑥)) (2.40) 

which can be combined with the recurrence relationship to give the special case of, Eq. (2.35): 

 
 
(1 − 𝑥2)

𝑘
𝑃𝑘

′(𝑥) = 𝑃𝑘−1(𝑥) − 𝑥𝑃𝑘(𝑥) 
 

(2.41) 

Eqs. (2.27) and (2.40) can be used to produce the relationship:  
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(1 − 𝑥2)𝑃𝑘

(1,1)(𝑥) = −
2𝑘 + 2

2𝑘 + 3
(𝑃𝑘+2(𝑥) − 𝑃𝑘(𝑥)) (2.42) 

In order to use a modal expansion in Legendre polynomials to solve problems with MWR, 

expressions for the derivatives of Eq. (1.2) are required. For Legendre polynomials Eq. (2.36) 

reduces to: 

  (2𝑘 + 1)𝑃𝑘 = 𝑃𝑘+1
′ − 𝑃𝑘−1

′  (2.43) 

This expression can be applied repeatedly so Eq. (2.38) for the Legendre case is: 

 
𝑃𝑚

′ = ∑ (2𝑘 + 1)𝑃𝑘(𝑥)

𝑚−1

𝑘=0
𝑘+𝑚 𝑜𝑑𝑑

 (2.44) 

An expression for the second derivative is:  

 
𝑃𝑚

′′ = ∑
(2𝑘 + 1) 

2
[𝑚(𝑚 + 1) − 𝑘(𝑘 + 1)]𝑃𝑘(𝑥)

𝑚−2

𝑘=0
𝑘+𝑚 𝑒𝑣𝑒𝑛

 (2.45) 

Due to the alternating odd/even nature of the polynomials, only alternate values appear in the 

derivative expressions. The notation k+m odd or even indicates that only these values appear in 

the summation.  For example: 

 𝑃5
′ = 𝑃0 + 5𝑃2 + 9𝑃4  

and 

 𝑃5
′′ = 42𝑃1 + 63𝑃3  

2.3 Orthogonal Polynomial Roots 

One advantage of using Chebyshev points is that their roots can be directly calculated. The 

interior roots of Chebyshev polynomials on the interval [-1,1] are given by the general formula: 

  
𝑥𝑘 = cos (

2𝑘 + 𝛼 − 1
2
 

2𝑛 + 𝛼 + 𝛽 + 1
 𝜋) (2.46) 

for k = 1,…,n. It is easiest to think of these roots as shown in Fig. 2.3. They are equally spaced 

in the angular, θ, coordinate. Where α = β = -½ for Chebyshev polynomials of the 1st kind and α 

= β = +½ for Chebyshev polynomials of the 2nd kind. The first kind correspond to midpoints of 

equal intervals in θ, while the second kind are at the endpoints of equal intervals. These roots 

are the base points of Chebyshev-Gauss and Chebyshev-Gauss-Lobatto quadrature. The 

roots with α = +½, β = -½ or α = -½, β = +½ are the base points of Chebyshev-Gauss-Radau 

quadrature. These quadrature formulas provide high accuracy when the integrand contains 

1/√1 − 𝑥2. The quadrature weights can be directly calculated [Krylov (1962), Canuto, et al. 

(1988)]. 
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For other Jacobi polynomials, the 

roots cannot be found as easily. 

There are two basic methods for 

determining the roots of the other 

Jacobi polynomials. The most 

popular method reformulates the 

problem as an eigenvalue problem 

for which the roots are the 

eigenvalues. The other is an iterative 

method such as the Newton-

Raphson method. We will consider 

the Newton-Raphson method as well 

as higher order iterative methods.  

For ultraspherical polynomials, α = β, both methods benefit from use of the equivalent shortcut 

polynomials, related by Eqs. (2.18) and (2.21). Since these polynomials have half as many 

terms and half as many roots, their roots can be determined with one fourth the effort. We also 

note that if the shortcut method is used for the ultraspherical cases, there are only three 

fundamentally different Jacobi polynomial roots in Table 2.1. The three cases are: (1) 

Gauss/Legendre α = β = 0, (2) Lobatto α = β = 1 and (3) Radau α = 1, β = 0. The symmetric 

cases in planar and spherical geometry are the same as shortcut cases for planar geometry.  

2.3.1 Eigenvalue Method 

Lanczos (1956, p. 376) notes that the recurrence relations for orthogonal polynomials can be 

cast in the form of a tridiagonal eigenvalue problem, where the eigenvalues are the roots to the 

polynomial. Using this idea, Golub and Welch (1969) developed a procedure for determining 

the roots and quadrature weights. They cast the problem in the form of a tridiagonal matrix, 

called the Jacobi matrix. The matrix is constructed from the monic recurrence coefficients as 

follows: 

 

 

[
 
 
 
 
 
 
 
 𝛼̂0 √𝛽̂1 0

√𝛽̂1 𝛼̂1 √𝛽̂2

√𝛽̂2 ⋱ ⋱

⋱ ⋱ ⋱

0 ⋱ ⋱]
 
 
 
 
 
 
 
 

 (2.47) 

The recurrence relationship arranged in this manner gives the polynomials in orthonormal 

form. The orthogonal polynomial is the characteristic polynomial of this matrix, so its 

eigenvalues are the roots of the polynomial. Given the recurrence coefficients and a routine for 

calculating eigenvalues, the roots can be found with only a few lines of code (see code box 

below). The quadrature weights can also be found from the eigenproblem since they bear a 

x

y
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Fig. 2.3 Roots Chebyshev polynomials of the 2nd kind, n = 9

x, roots
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simple relationship to the eigenvectors of the Jacobi matrix. However, the code below 

calculates the weights using a method described in Section 2.4. It also calculates the 

differentiation matrix using the same parameters as described in Section 2.5. The code relies 

on Gautschi’s (2005) OPQ r_jacobi function to obtain the recurrence coefficients. 

2.3.2 Newton-Raphson Iterative Method 

The other method for determining the roots is a standard iterative method, such as the 

Newton-Raphson method. For the iterative solution of a problem like this, one must make 

certain all roots are found and they are in order. Iterative algorithms often use a coarse scan 

and isolate step before switching to a second order Newton-Raphson method for refinement to 

the final value. The methods described here can start with a second or higher order method 

and will converge rapidly and without fail. Most collocation solutions converge with a small 

number of points. However, there are problems reported where thousands of points have been 

used. Our original goal here was to develop a method which is reasonably efficient and 

accurate for up to a few hundred points or so. However, after emersion in this compelling 

problem, we have taken the problem much further. 

If m indicates the iteration number, each iteration of a normal Newton-Raphson method 

requires calculation of the polynomial value and its derivative. These quantities are used to find 

an improved estimate of the kth root as follows: 

   𝑥𝑘
𝑚+1 = 𝑥𝑘

𝑚 − 𝑝𝑛(𝑥𝑘
𝑚)/𝑝𝑛

′ (𝑥𝑘
𝑚) (2.48) 

where pn is usually calculated with the recurrence relationship, Eq. (2.12). The derivative of the 

polynomial can be calculated using one of Eqs. (2.29), (2.35) or (2.38). Eq. (2.35) requires 

fewer calculations than the other choices. 

How can one insure the Newton-Raphson method doesn’t find the same root over and over 

again? This problem can be avoided by using a procedure called deflation, which suppresses 

the roots which have been found [Villadsen and Michelsen (1978), Karniadakis and Sherwin 

Matlab Function for Quadrature and Differentiation 

function [x,w,A] = OCnonsymGLR(n,meth) 

   % code for nonsymmetric orthogonal collocation applications 0 < x < 1 

   % n - interior points 

   % meth = 1,2,3,4 for Gauss, Lobatto, Radau (right), Radau (left) 

   % x - collocation points 

   % w - quadrature weights 

   % A - 1st derivative 

   na = [1 0 0 1];  nb = [1 0 1 0];  nt = n + 2; 

   a = 1.0 - na(meth);  b = 1.0 - nb(meth); 

   ab = r_jacobi(n,a,b);  ab(2:n,2) = sqrt(ab(2:n,2)); 

   T = diag(ab(2:n,2),-1) + diag(ab(:,1)) + diag(ab(2:n,2),+1); 

   x = eig(T);  x=sort(x);  x=0.5*(x+1.0);  x = [0.0;x;1.0]; 

   xdif = x-x'+eye(nt);     dpx = prod(xdif,2); 

   w = (x.^nb(meth)).*((1.0 .- x).^na(meth))./(dpx.*dpx); w = w/sum(w); 

   A = dpx./(dpx'.*xdif);  A(1:nt+1:nt*nt) = 1.0 - sum(A,2); 

 end 
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(2013)]. Suppose that roots 0 through k - 1 have been found and we want to calculate root k 

with an algorithm modified to suppress the roots already found. The lower order polynomial 

which includes only the remaining roots is not explicitly calculated, but the benefits can be 

obtained nevertheless. The polynomial with suppressed roots is: 

 
𝑟𝑘(𝑥) =

𝑝𝑛(𝑥)

𝑠𝑘(𝑥)
 (2.49) 

where 𝑠𝑘(𝑥) = ∏ (𝑥 − 𝑥𝑖)
𝑘−1
𝑖=0  with 𝑠0 = 1 and its derivative is 𝑠𝑘

′ (𝑥) = 𝑠𝑘(𝑥)∑ 1/(𝑥 − 𝑥𝑖)
𝑘−1
𝑖=0 . Eq. 

(2.48) is then modified to:    

 
 𝑥𝑘

𝑚+1 =  𝑥𝑘
𝑚 −

𝑟𝑘(𝑥𝑘
𝑚)

𝑟𝑘
′(𝑥𝑘

𝑚)
=   𝑥𝑘

𝑚 − 
𝑝𝑛

𝑝𝑛
′ [1 − 

𝑝𝑛𝑠𝑘
′

𝑝𝑛
′ 𝑠𝑘

]

 
(2.50) 

Fig. 2.4 illustrates this method for finding 

the roots of the monic Jacobi polynomial, 

𝑝5
(1,1)

. The figure depicts an iteration 

seeking the 3rd root after the first two 

have been found. The curves are the full 

polynomial and the one with the roots 

suppressed, i.e. r2(x) in Eq. (2.49). The 

straight line is the Newton-Raphson 

linear estimate for the next root. This 

method has two advantages.  First, the 

iterations should converge faster, 

because as the iterations proceed, the 

degree of the polynomial is continually 

reduced until the last root is on a straight 

line, requiring no iteration. Second, the 

radius of convergence is larger and more predictable as shown by the heavy line in Fig. 2.4, so 

convergence can be assured. Any point to the left of the next root is within the radius of 

convergence. The method will converge without fail by starting near the left boundary and by 

always selecting an initial guess which is less than the value of the next root, i.e. 𝑥𝑘
0 < 𝑥𝑘. 

Alternatively, we could start at the right boundary and work back to the left.  

2.3.3 Root Estimation Methods 

A simple way to achieve greater efficiency is to use better initial estimates. Using crude initial 

estimates, the code of Villadsen and Michelsen (1978) typically requires 7 to 9 iterations. 

Others have reported a requirement of about 6 iterations [Shen, et al. (2011)]. Eq. (2.46) 

applies strictly for Chebyshev polynomials, but it can be used to approximate the roots of a 

general Jacobi polynomials, where α and β are viewed as interpolating parameters. Use of Eq. 

(2.46) cuts the number of iterations required to about 3, a saving of more than a factor of 2. 
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There are other benefits to accurate initial estimates. An accurate initial estimate assures the 

iterations will converge to the root of interest. Also, higher order iterative methods can be used 

without fear of divergence. The idea of root suppression is a good one, but with accurate initial 

estimates it is not needed.  When the estimate is close to convergence, the bracketed term in 

the denominator of Eq. (2.50) goes to unity, so root suppression has no effect. With accurate 

initial estimates the efficiency is improved because fewer iterations are needed, convergence 

is assured, root suppression is not necessary and higher order methods are effective.  

There are much better approximations than Eq. (2.46) for estimating the roots of Jacobi 

polynomials. For a review of available root estimation methods, see Gautschi and Giordano 

(2008) and Hale and Townsend (2013). As mentioned above and shown in Figs. 2.1 and 2.2, 

Jacobi polynomials tend to behave like Bessel functions near the boundaries but are more trig-

like in the interior. Due to this behavior, the methods for estimating roots tend to fall in two 

categories: those more accurate near the boundaries and those more accurate in the interior. 

We will refer to them as either interior methods or boundary methods. The best interior 

method, valid for general Jacobi polynomials, is due to Gatteschi and Pittaluga (1985): 

  𝑥𝑘 = cos(𝜃̅𝑘 + 𝛿𝜃̅𝑘) + O(𝑛−4) (2.51) 

where 

 𝜃̅𝑘 = 𝜋 (2𝑘 + 𝛼 −
1

2
) 𝜎𝑛⁄  

𝛿𝜃̅𝑘 = [(
1

4
 − 𝛼2) cot(

𝜃̅𝑘

2
) − (

1

4
 − 𝛽2) tan (

𝜃̅𝑘

2
)] 𝜎𝑛

2 ⁄  

𝜎𝑛 =  2𝑛 + 𝛼 + 𝛽 + 1 

 

and the roots are numbered from largest to smallest or right to left rather than left to right. We 

note that this equation is simply Eq. (2.46) with the correction, 𝛿𝜃̅𝑘, added. It is exact for all 

combinations of Chebyshev points, i.e. α = ±½ and β = ±½ in Eq. (2.46), since the correction is 

zero. The estimated roots are usually accurate to at least four or five digits even for relatively 

small values of n. The accuracy is better for α = β = 1 (Lobatto) than for α = β = 0 (Gauss-

Legendre), even though the Lobatto case is outside the stated range of applicability, which is | 

α | ≤ ½ and | β | ≤ ½.  

An interior method which is better for the roots of Legendre polynomials or Gauss points is due 

to Tricomi (1950): 

 
 𝑥𝑘 = [1 − 

𝑛 − 1

8𝑛3
−

1

384𝑛4
(39 − 

28

sin2(𝜃̅𝑘)   
)] cos(𝜃̅𝑘) + O(𝑛−5) (2.52) 

Where 𝜃̅𝑘 is the same as above. However, this method does not generalize to other Jacobi 

polynomials. Both of these interior methods have poor accuracy near the boundaries. 

A more accurate approximation for roots near the boundary, x = 1, is also due to Gatteschi 

(1985). The approximation has a form like Eq. (2.51):  

  𝑥𝑘 = cos(𝜃̃𝑘 + 𝛿𝜃̃𝑘) + 𝜃̃𝑘
5  𝑂(𝑛−2) (2.53)  

where: 
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𝜃̃𝑘 =

2 𝐽𝛼,𝑘

𝜈𝑛
 

𝛿𝜃̃𝑘 = −𝜃̃𝑘 [
4 − 𝛼2 − 15𝛽2

45𝜈𝑛
4

(
𝐽𝛼,𝑘
2

2
+ 𝛼2 − 1)] 

 𝜈𝑛 = √𝜎2 + (1 − 𝛼2 − 3𝛽2)/3  

Another boundary method is due to Olver (1974): 

  𝑥𝑘 = cos(𝜃𝑘 + 𝛿𝜃𝑘) + 𝜃𝑘
2𝑂(𝑛−3) (2.54)  

where: 

 
𝜃𝑘 = 2

𝐽𝛼,𝑘

𝜎𝑛
 

𝛿𝜃𝑘 =
1

𝜎𝑛
2
[2 ( 𝛼2 −

1

4
)
1 − 𝜃𝑘cot (𝜃𝑘)

𝜃𝑘

− ( 𝛼2 − 𝛽2)tan(𝜃𝑘 2⁄ )] 

and σn is defined with Eq. (2.51). Both of these boundary methods rely on the roots of the 

Bessel function of kind α, where Jα,k is the kth root. The error terms indicate the accuracy 

deteriorates rapidly as the roots move away from the boundary. Due to the symmetry shown in 

Eq. (2.10), the roots near x = -1 can be estimated using Eqs. (2.53) and (2.54) with α and β 

reversed. Bogaert (2014) has improved on Eq. (2.54) for the special case of Legendre 

polynomials. His method is accurate enough to give the roots to 16 digits for n > 25. 

The Bessel roots can be stored for small ones while larger ones can be accurately 

approximated using the first few terms of McMahon’s (1894) (see Olver, et al. (2018), 10.21) 

expansion: 

 
 𝐽𝛼,𝑘 = 𝜆 −

𝜇 − 1

8𝜆
−

4(𝜇 − 1)(7𝜇 − 31)

3(8𝜆)3
− ⋯ (2.55)  

where:  𝜇 = 4𝛼2,   𝜆 = (𝑘 + 1

2
α − 1

4
)𝜋. For α = 0 or 1, truncating the expansion after three terms 

shown gives roots that are accurate to about 1x10-6 for k > 3 and to 2x10-9 for k > 12. Using 5 

terms the approximation is accurate to 1x10-16 for k > 16. We have implemented these 

methods by storing the first 16 roots and calculating others using a 5 term expansion. If less 

accurate roots are used, the error will flatten out and become constant at large n. 

Estimation methods, Eqs. (2.51), (2.53) and (2.54), produce identical estimates when either 

the shortcut or full polynomial roots are estimated. We will briefly outline the proofs. We need 

to compare the roots for the following two cases:  

 even case: compare n with β = -½ vs. 2n and β = α  

 odd case: compare n with β = +½ vs. 2n+1 and β = α  
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If the estimates for the shortcut cases are ξ and those for the full method are x, we ask - is 𝝃 =

2𝒙2 − 1? Given the trigonometric identity cos(2𝜃) = 2 cos2(𝜃) − 1, we need only show the 

angles for the shortcut procedure are twice those with the full polynomial.  

For 𝜃̅𝑘 in Eq. (2.51), the numerators are the same and σn is twice as large for the full method, 

so the angle values have the correct relationship. By using the double angle identity for 

tangents it can be proven that the expression for 𝛿𝜃̅𝑘 also has the correct relationship. For Eq. 

(2.53) it is first apparent that like σ, the expressions for ν are twice as large for the full 

polynomials and the rest of the proof is simple algebraic manipulation. The proof for Eq. (2.54) 

again requires use of the double angle formula for tangents. 

We have performed calculations with the four error estimation methods to evaluate their utility 

for initiating an iterative solution. Ideally, we would like to know the range of n and x when each 

method is best for the cases in Table 2.1. The error terms included with the root estimation 

methods, Eqs. (2.51) to (2.54), give some indication of their accuracy. All the estimation 

methods give a dependence of the error on n. While the error terms for the interior methods do 

not provide a dependence on x, the boundary methods include a dependence on θ which is 

easily translated to x.  Unfortunately, we have also found some of the error terms are incorrect, 

since they do not always agree with calculations. 

For the three cases of interest in Table 2.1, Figs. 2.5, 2.6 and 2.7 illustrate calculations for n = 

14. By picking the best estimates, the maximum errors are about 10-7 for all three cases. In 

each case a different one of the four estimation methods is best. It is obvious from these 

graphs that the accuracy of the estimates varies considerably with x. As expected, the interior 

methods are more accurate in the interior and the boundary methods are best near the 

boundaries. Table 2.3 lists parameters for the following equation which approximates errors in 

the estimates: 

 
𝜖 = 𝜖10 (

𝑛

10
)

𝑎

(
𝜃

𝜋 4⁄
)

𝑏

 (2.56) 
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where, of course,  𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥). The values 

above are normalized so that ϵ10 

approximates the error at x = 0.707 for n = 10. 

The methods, Eqs. (2.51) to (2.54), are 

claimed to have exponent a of -2 to -5, while 

exponent b is indicated to be 5 for Eq. (2.53) 

and 2 for Eq. (2.54). We will use an exponent 

of 0 in other cases to indicate no correlation. To better establish the errors, the correlations 

were compared to the exact roots for n to 250. The errors were interpolated at θ = π/3, π/4 and 

π/6 or x = 0.500, 0.707 and 0.866. The errors are listed for only positive x. Values for negative x 

are given by reversing α and β (see Eq. (2.10)). The b exponents were determined by curve fits 

like those shown in Figs. 2.5, 2.6 and 2.7. Values for parameter a were determined by fitting 

the values from n = 25 – 250 as shown in Fig. 2.8, where “left” designates errors at x = -0.707. 

The a exponent is normally insensitive to x, but some methods had a “sweet spot” with 

exceptional accuracy at some locations. For example, Eq. (2.51) predicts the Lobatto points 

near 0.707 with greater accuracy (see Fig. 2.9). The error interpolated at 0.707 produces an 

exceptionally large exponent of -5, so more typical values at 0.50 are listed in Table 2.3.  

In several instances, the values in Table 2.3 disagree with the error estimates listed in Eqs. 

(2.51) to (2.54). The a exponent for Eq. (2.52) is clearly closer to -4 than -5 and that for Eq. 

(2.54) is closer to -4 than -3. All but Eq. (2.53) appear to have an a exponent of approximately 

-4, so their relative accuracy is essentially independent of n. There are also some 

discrepancies in the b exponent. For Eq. (2.53) the appropriate exponent is clearly 6 not 5. Eq. 

Table 2.3 Error of Estimated Roots, 
Eq. (2.56)  

 α β ϵ10 a b 

Eq. (2.52) 0 0 9.47E-07 -3.87 0 

Eq. (2.51) 0 0 1.11E-05 -3.98 0 

" 1 1 6.52E-07 -3.95 0 

" 1 0 3.17E-06 -3.96 0 

" 0 1 9.70E-06 -3.97 0 

Eq. (2.53) 0 0 5.70E-07 -1.99 6 

" 1 1 1.61E-06 -1.97 6 

" 1 0 5.22E-07 -1.98 6 

" 0 1 1.63E-06 -1.98 6 

Eq. (2.54)  0 0 5.27E-07 -4.00 2 

" 1 1 1.12E-06 -3.94 2 

" 1 0 1.52E-08 -3.69 2 

" 0 1 2.44E-07 -3.93 4 
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(2.54) has the curious behavior that the exponent is 4 for the Radau case, α = 1, β = 0, and 2 in 

other cases, see Figs. 2.5, 2.6 and 2.7. 

From these calculations, we have devised some simple rules to pick the best correlation for 

accurate initial estimates. With the solution method described in Section 2.3.4, we are primarily 

interested in selecting estimates to give the smallest maximum error, since the maximum error 

will control the number of iterations required. Eq. (2.46) is used to give approximate values for 

the roots. The correlation chosen is based on the value of these rough estimates relative to a 

simple cutoff value, x* as follows:  

Gauss-Legendre – x* = 0.5 + 0.019n for n < 19 and x* = max(0.48, 0.57 - 0.001n) for n ≥ 19. 

use Eq. (2.52) for xk < x*, otherwise use Eq. (2.53) for n < 19 and Eq. (2.54) for larger n. 

Lobatto-Jacobi(1,1) – x* = max(0.78, 0.813 – 0.00075n), use Eq. (2.51) for xk < x* otherwise 

use Eq. (2.53) if n < 20 and Eq. (2.54) for larger n. 

Radau-Jacobi(1,0) – x* = 0.1(β - α), use only Eq. (2.54), use right end values for xk > x* , 

otherwise use left end values. 

These rules are compatible with the observations from Figs. 2.5 to 2.8 and Table 2.3. For all 

points, the best boundary method is Eq. (2.53) for small n, but due to the higher convergence 

rate, Eq. (2.54) becomes better for large n. Eq. (2.53) is always better for the points closest to 

the boundary, but we are more interested in reducing the maximum error. For the Gauss-

Legendre case, Eq. (2.52) is always the best interior method, while for n = 18 to 30, there is 

little difference between the boundary and interior methods for x from 0.55 to 0.85. The cutoff 

values for large n approximates the 0.50 value recommended by Hale and Townsend (2013). 

For the Lobatto case, the cutoff is almost constant because the boundary and interior methods 

have almost identical convergence rates. For Radau points, the boundary method, Eq. (2.54), 

is always better than the interior method, but the cutoff governs from which boundary the 

estimates are chosen, left or right. This boundary method is one of the best methods for 

general Jacobi polynomials, i.e. excluding Eq. (2.52) which is not general. Even so, it beats Eq. 

(2.52) for half the domain at larger n and for all or most of the domain it beats the general 

interior method, Eq. (2.51), for Legendre and Radau points. Bogaert (2014) has improved on it 

for the Gauss-Legendre case. 

Overall, the simple rules above do an excellent job of picking accurate estimates. 

Unfortunately, they are specialized for the three cases of interest here, see Table 2.1. Although 

some of the results in Table 2.3 indicate a correlation, e.g. for Eq. (2.53) the results correlate 

with β. There is no obvious generalized correlation, but one would not be far wrong by using 

Eq. (2.54) for all but the points nearest zero. Perhaps the information in Table 2.3 will be of 

benefit for developing a generalized estimation method. 
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Figs. 2.9 and 2.10 show the behavior of the estimation methods for Radau and Lobatto points 

and large n. Earlier we mentioned that Eq. (2.51) has a sweet spot at 45 degrees or x = 0.707. 

It is clearly visible in Fig. 2.9. Also, the results are consistent with the 4th order rate of 

convergence in Table 2.3. 

Fig. 2.11 shows calculated results using the root estimation methods to initiate a Newton-

Raphson iteration.  The decline in the maximum initial error is consistent with Table 2.3. For n 

< 30 the error is driven to roundoff conditions after two iterations, while for larger n only one 

iteration is required. With accurate initial estimates the efficiency of root determination is 

dramatically improved relative to simpler initial estimates.  

We also note that Fig. 2.11 shows that the maximum error in the Radau roots is constant, 

while those for Gauss and Lobatto points show a modest linear increase with n. To gain a 

better understanding, Fig. 2.12 shows the distribution of the error. Since the roots tend to 

cluster about the endpoints, they are plotted versus 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥) to more clearly show the 

roots near the boundary. The figure shows the errors are similar except near x = 0. The 

increasing error is due to use of the shortcut procedure for the Gauss and Lobatto points. The 

shortcut procedure requires conversion of the roots by 𝒙 = √(1 + 𝝃)/2. The roots ξ show no 
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growth in the error, like the Radau roots. However, due to the conversion, the error terms are 

related by  𝝐𝑥 = 𝝐𝜉/4𝒙. The error in x is greater for roots near zero, x < ¼ or θ > 75o. This area 

is relatively less important. The usual difficulty is near x = 1, where the roots are closely space.  

2.3.4 Vectorized Higher Order Iterative Method 

As mentioned above, the root suppression algorithm is of no benefit when accurate initial 

estimates are used. In addition to the extra complication, another disadvantage of the 

algorithm is the roots are found one at a time. Newer computer hardware has again made 

vectorization of code important. Writing code for vectorization is especially important for 

interpreted languages like Matlab or Python even when vector hardware is not available. With 

an interpreted language, the vector calculations can be carried out with library calls rather than 

slow looping operations. For these reasons, we have elected not to use root suppression and 

instead solve for all roots together. The code should vectorize with appropriate hardware and 

compilers.  

The text box below shows vector code for a Newton-Raphson iteration. This code is in Matlab, 

but similar code can be written in other languages which support array operations. The code 

relies on three external functions. Like the eigenvalue code, it relies on the x_jacobi function 

which is an extended version of Gautschi’s (2005) r_jacobi function. It returns the coefficients in 

the conventional form, Eq. (2.16). The Jacobi_Deriv function returns the three coefficients of Eq. 

(2.35) and RootEstimate implements the method described in the previous section for 

estimating roots. The iteration loop requires three statements, one to get the change in the 

value according to Eq. (2.48), one to update the values, and a test for convergence. Each 

statement in the iteration loop, including those in Pcalc, operates on all roots at once. If the 

Matlab Function for Jacobi Roots 

function [x] = Jacobi_Xroot(n,a,b) 

   MaxNR = 4;   xtol = 1000.0*eps; 

   ab = x_jacobi(n,a,b);         % recursion coefficients 

   c = Jacobi_Deriv(n,a,b);      % derivative relationship 

   x(:,1) = RootEstimate(n,a,b); % root estimates 

   for i=1:MaxNR 

      dp = Pcalc(x,n,ab,c); 

      x = x .- dp; 

      if(max(abs(dp)) < xtol)break end 

   end 

end 

function dp = Pcalc(x,n,ab,c)  % calculate p, p', return p/p' 

   nx = size(x);   p(1:nx,1:n+1) = 0.0; 

   p(:,1)  = 1.0;   p(:,2)  = ab(1,3)*x(:,1) - ab(1,1); 

   for k = 2:n % calculate p 

      p(:,k+1) = (ab(k,3)*x(:,1) - ab(k,1)).*p(:,k) - ab(k,2)*p(:,k-1); 

   end 

   dp = ((c(1)*x+c(2)).*p(:,n+1) + c(3)*p(:,n)); 

   dp = p(:,n+1).*(1.0-x.*x)./dp;   % p/p' 

end 
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computer hardware has vector processing capabilities and the compiler can generate code for 

it, substantial speedups are possible. 

For an ultraspherical polynomial, only n/2 roots need be determined. Their symmetry can be 

exploited in three different ways. First, the code can be used as is, where n, nx, a and b 

represent n, n/2, α and β, respectively. Alternatively, the code can be used as written by 

passing n/2 for n and ±½ (+ for odd n, - for even) for parameter β or b. The roots ξ are 

determined, so 𝒙 = ±√(1 + 𝝃)/2. Thirdly, the code for Pcalc could be modified to calculate the 

polynomial and its derivative with Eqs. (2.18), (2.21), (2.30) and (2.31). This is a relatively 

minor modification, since the shortcut polynomials obey the same type of recurrence 

relationship. In all of these cases RootEstimate must be organized to provide roots in the 

required form. The first alternative saves roughly half the calculations, since only half as many 

roots are solved for. The second and third alternatives reduce the calculations by a factor of 4 

since there are not only half as many roots, but also the loop in Pcalc is half as long. 

There are two problems with the convergence test used in this code. First, near convergence 

the change in the value is a good estimate of the error at the beginning of the iteration, so 

convergence is not detected until after it has occurred. This approach usually requires an extra 

unnecessary iteration. The second problem with the convergence tolerance is that it is based 

on the maximum error over all the points. If all points have converged except one, then an 

additional iteration is performed for all the points to reduce the error for the one. 

The derivatives of the orthogonal polynomials are needed to calculate the barycentric weights, 

in Eq. (2.4), quadrature weights, and differentiation matrices (discussed in Sections 2.4 and 

2.5). If the derivatives are captured for these purposes, the extra iteration is not wasted. Also, 

a larger tolerance can be used to reduce unnecessary iterations. The tolerance in the code 

above is three orders of magnitude greater than the machine epsilon. It could be much larger 

still without affecting the roots calculated. 

The previous section describes how to determine initial estimates which minimize the 

maximum error to prevent or minimize wasted iterations due to nonuniform convergence. Also, 

given the results shown in Figs. 2.11, the code in the box above can be altered by removing 

the test for convergence and by setting MaxNR = 2 for n < 30 and MaxNR = 1 for larger n. This 

is the ultimate solution to the deficiencies of the convergence test shown in the code above. In 

this case, there is no need to save dp, so the iteration loop can be reduced to a single 

statement. These changes give a dramatic improvement in efficiency relative to simpler initial 

estimates requiring 6 to 9 iterations, one being wasted due to the convergence test. 

Fig. 2.11 shows that with accurate initial estimates only one or two Newton-Raphson iterations 

are required to reach round off conditions. Perhaps even greater efficiency can be achieved 

with higher order iterative methods. Lether (1978) and Yakimiw (1996) considered several 

techniques for creating higher order iterative functions. One method expands the solution 

about a root using Taylor series and then uses reversion of the series [Abramowitz and Stegun 

(1972), p. 16] to produce a higher order extension to Eq. (2.48): 
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 𝑥 − 𝑥0 = 𝛿(𝑥0) = −∑

𝑑𝑗

𝑗!
𝑞(𝑥0)

𝑗

𝑀

𝑗=1

 (2.57) 

where x0 and x are the initial and improved root estimates, respectively, and 𝑞(𝑥0) =

𝑃(𝑥0) 𝑃′(𝑥0)⁄  and the series is carried out to the degree desired. The subscripts and 

superscripts of P, i.e. α, β and n, have been dropped for convenience. The coefficient d1 = 1, 

so the Newton-Raphson method results when only one term is used. The expressions for j > 1 

involve higher derivatives of the polynomial and become increasingly complicated for large j. 

The higher derivatives are easily calculated from Eq. (2.33). 

The procedure for determining the coefficients, d, can be simplified. The Sturm-Liouville 

relationship for the derivatives, Eq. (2.32), are first rewritten: 

 
 𝑃′′ =

𝛼 − 𝛽 + (𝛼 + 𝛽 + 2)𝑥

1 − 𝑥2
𝑃′ −

𝑛(𝑛 + 𝛼 + 𝛽 + 1)

1 − 𝑥2
𝑃 

=  
𝑎́𝑥 + 𝑏́

1 − 𝑥2
𝑃′ −

𝑐́

1 − 𝑥2
𝑃 

= 𝑏1(𝑥)𝑃′ + 𝑏0(𝑥)𝑃 

(2.58) 

Following Traub (1964) and Yakimiw this relationship is used to derive simpler expressions for 

the coefficients, d. The coefficients depend on x and b1 and b0, but not explicitly on the higher 

derivatives of P.  The coefficients are developed from the expansion by forcing 𝑑𝛿 𝑑𝑥 = −1⁄  

near the root. The differentiation of Eq. (2.57) gives:  

  
−

𝑑𝛿

𝑑𝑥
= 1 = [𝑑1

′𝑞 +
1

2
𝑑2

′ 𝑞2 +
1

6
𝑑3

′ 𝑞3 + ⋯] + [𝑑1 + 𝑑2𝑞 +
1

2
𝑑3𝑞

2 + ⋯] 𝑞′ (2.59) 

Now, using Eq. (2.58), substitute 𝑞′ = 1 − 𝑏1𝑞 − 𝑏0𝑞
2 and collect terms with like powers of q:  

  
−

𝑑𝛿

𝑑𝑥
= 1 = 𝑑1 + [𝑑1

′ + 𝑑2 − 𝑑1𝑏1]𝑞 + [
1

2
𝑑2

′ +
1

2
𝑑3 − 𝑑2𝑏1 − 𝑑1𝑏0] 𝑞

2 + ⋯ (2.60) 

Clearly, d1 = 1 and each of the terms in brackets must be zero, so the coefficients can be 

expressed by the recurrence relationship:  

  𝑑𝑗+1 = −𝑑𝑗
′ + 𝑗𝑑𝑗𝑏1 + 𝑗(𝑗 − 1)𝑑𝑗−1𝑏0 (2.61) 

It is straight forward to work out the coefficients with this relationship. We have derived them 

for a general Jacobi polynomial through M = 5. They may be found in the supplied code. 

However, we find that convergence is achieved with one iteration when fewer terms are 

included. After working through the algebra and simplifying, the expansion can be represented 

as: 

  
 𝛿(𝑥0) = −(1 − 𝑥2)∑

𝑑̂𝑗

𝑗!
𝑞̂(𝑥0)

𝑗

𝑀

𝑗=1

 (2.62) 
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where: 𝑞̂(𝑥) = 𝑃(𝑥) [(1 − 𝑥2)𝑃′(𝑥)]⁄ . Using the parameters of Eq. (2.32) explicitly, the terms 

through M = 3 are: 

 𝑑̂1 = 1 

𝑑̂2 = 𝑏́ + 𝑎́𝑥 

𝑑̂3 = 2(𝑏́2 − 𝑐́) − 𝑎́ + 2𝑏́(2𝑎́ − 1)𝑥 + (2𝑎́2 − 𝑎́ + 2𝑐́)𝑥2 

(2.63) 

where the parameters are defined in Eq. (2.58). The Newton-Raphson gives a quadratic 

convergence rate. Each additional term in the expansion increases the rate of convergence by 

one, so the rate of convergence is then: 𝜖1 = 𝜖0
(𝑀+1)

, where ϵ0 is the error at the beginning of 

an iteration and M is the number of terms in the expansion 

Fig. 2.13 shows error reduction with one iteration, i.e. ϵ1 vs. ϵ0. The results are illustrated for 

the first Lobatto point with n = 14. The first point, closest to the boundary, converges at a 

slightly slower rate due to larger higher derivatives. The convergence behavior is stable and by 

fitting the slopes of the lines, the convergence rates are consistent with the expected order. A 

Newton-Raphson iteration drops the error from 10-6 to about 10-10 in one iteration, while the 4th 

order method (including terms through d3) drops it from 10-5 to 10-15 and the 6th order iteration 

from 10-4 to 10-16. Fig. 2.6 shows the estimated roots for this case are in error by 10-7 or less, 

so only one iteration is required for all of the methods except for the Newton-Raphson. 

Fig. 2.14 is like Fig. 2.11 but with the higher order methods added and only one iteration 

considered. With the accurate initial estimates, the 3rd order method (M = 2) converges in one 

iteration for n > 7. The higher order methods require only one iteration for all n. The shortcut 

polynomials were again used for Gauss and Lobatto points. For this reason, the equations are 

linear for n < 4, so a single Newton-Raphson iteration is exact, while the 3rd order method is 

not. The 4th and higher order methods are also not exact, but reach roundoff conditions after 

one iteration for all n.  

Before leaving this section, we mention the clever method of Bogaert (2014) which addressed 

the case of Gauss points. He calls his method iteration free, but it is iteration free only for n ≳ 

n
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25. The results for small n are stored rather than calculated.  Fig. 2.14 shows that Yakimiw’s 

method is also iteration free when combined with accurate initial estimates. However, instead 

of using the two steps described here, i.e. root estimation followed by high order iteration using 

reversion of series, Bogaert combined the two analytically to produce an extremely accurate 

root estimation method, accurate to 10-16 for n > 25. He used simple root estimates, 𝜃𝑘 =

2 𝐽0,𝑘 𝜎⁄  i.e.  Eq. (2.54) truncated to the first term. The simplicity of the initial estimates 

combined with symbolic algebraic software allowed him to combine the two steps into one. In 

principal, the same technique could be used for Lobatto quadrature by expansion about the 

estimated roots 𝜃𝑘 = 2 𝐽1,𝑘 𝜎⁄ . Eq. (2.54) is an excellent one to expand upon since it gives good 

accuracy in both the boundary and interior regions. Unfortunately, Bogaert’s method has not 

yet been extended to Lobatto and Radau quadrature. However, we use some of his work for 

large n. 

In summary, the accurate initial estimates together with higher order iterative methods 

alleviates the need to iterate at all. As a result, the Jacobi polynomial needs to be evaluated 

only once for each unique root. For the most common ultraspherical case, polynomial 

evaluation with the shortcut recurrence relations requires O(5n2/4) floating point operations. 

Calculation of the polynomial derivatives and other calculations needed for a single iteration 

are approximately 5n, 8n and 12n for 2nd (Newton-Raphson), 3rd and 4th order methods, 

respectively. The use of higher order iterations is obviously worthwhile since it avoids a second 

O(5n2/4) calculation of the polynomial. Higher order iterations are not needed for n > 30, and a 

third order method is adequate for n = 8 to 30.  

2.4 Quadrature and Barycentric Weights    

Here we discuss the calculation of the quadrature weights and barycentric weights. Calculation 

of the quadrature weights is discussed in many texts, with many different procedures given. In 

this development, the traditional interval of [-1,1] is used for most of the calculations. 

Conversion of the results to the shifted interval [0,1] is described since it is more convenient for 

solving problems with MWR.  

Here we are concerned with the efficiency and simplicity of the calculations, computability of 

the numbers and rounding errors. We are primarily interested in small to intermediate values of 

n, say n < 200. However, MWR atmospheric modeling calculations with n of several thousand 

are mentioned by Yakimiw (1996). The quadrature weights are usually calculated from the 

eigenvectors found during the eigenvalue analysis described in Section 2.3.1. Alternatively, 

they may be calculated directly from the roots with various formulas. We will use the later 

approach here, together with the highly efficient root finding method discussed in Section 

2.3.4. 

The weights can be calculated directly from the roots using many formulas involving the 

polynomials and/or their derivatives evaluated at the roots. In the literature, one is frequently 

presented with one formula (and often one computer program) for Gaussian quadrature, 
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another for Radau quadrature, a third for Lobatto quadrature and so forth. Here we are 

interested not only in the three fundamental cases, Gauss, Lobatto and Radau, but also 

symmetric problems in planar, cylindrical and spherical geometry. We will develop all from a 

single formula. We show how the basic formula and the polynomial relationships of Sections 

2.1 and 2.2 can produce other formulas found in the literature. The derivatives of the 

polynomials can be calculated in many ways, e.g. Eqs. (2.29), (2.35) and (2.38). To accurately 

and explicitly specify the calculation procedure one must state how the polynomial derivatives 

are determined. Some previous works have not provided this information, making the results 

difficult to interpret.  

Formulas for the weights can be developed from the single formula for the Jacobi-Gauss 

weights [Krylov (1962, p 113) and Hildebrand (1987, p. 401)]. The general formula for the 

Jacobi-Gauss weights in Eq. (2.8) for the interval [-1,1] is:  

 
 𝑊𝑖

∗ =
2α+β+1Γ(𝑛 + 𝛼 + 1)Γ(𝑛 + 𝛽 + 1)

Γ(𝑛 + 𝛼 + 𝛽 + 1) 𝑛! (1 − 𝑥𝑖
2)

[𝑃𝑛
(𝛼,𝛽) ′(𝑥𝑖)]

−2

 

= (2𝑛 + 𝛼 + 𝛽 + 1)𝜁𝑛
(𝛼,𝛽)

[√1 − 𝑥𝑖
2 𝑃𝑛

(𝛼,𝛽) ′(𝑥𝑖)]

−2

 

(2.64) 

The asterisk denotes the weights for Eq. (2.8), where the integrand contains the weight 

function 𝜔(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽. Gaussian quadrature is the Jacobi-Gauss quadrature for the 

special case where α = β = 0. The weights for Lobatto and Radau quadrature methods and 

weights for symmetric problems can be calculated from the Jacobi-Gauss weights. 

 Consider Lobatto quadrature and recall the definitions in Eqs. (2.5) and (2.8). The Jacobi-

Gauss weights for α = β = 1 are given by Eq. (2.64) and also:  

 
𝑊𝑖

∗ = ∫ ℓ𝑖
∗(𝑥)(1 − 𝑥)(1 + 𝑥)

1

−1

𝑑𝑥 = ∫ ∏
(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=1
𝑗≠𝑖

(1 − 𝑥2)𝑑𝑥
1

−1

 
 

where ℓ* interpolates through the interior points only. The Lobatto quadrature weights can be 

expressed in terms of the interpolant through the interior and end points, so they are given by: 

 

𝑊𝑖 =  ∫ ℓ𝑖(𝑥)
1

−1

𝑑𝑥 = ∫

[
 
 
 
 
(1 − 𝑥2)

(1 − 𝑥𝑖
2)

∏
(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

𝑑𝑥
1

−1

=
𝑊𝑖

∗

(1 − 𝑥𝑖
2)

 (2.65) 

The boundary weights are easily calculated from ∑𝑊𝑖 = 2 or as described below. The weights 

for other cases can be calculated in a similar way using the appropriate values of α and β from 

Table 2.1. Throughout this section, the values of α and β from Table 2.1 are implied when the 

polynomials are shown without the (α,β) superscript designation. 

The quadrature weights can also be expressed in terms of the barycentric weights, 𝑊𝑖
𝑏 =

1/𝑝̂𝑛
′ (𝑥𝑖) in Eq. (2.1), so they can be determined directly from the roots using the continued 
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products. Expressing the quadrature weights in terms of the barycentric weights is especially 

attractive, since the barycentric weights are needed for interpolation and differentiation, 

discussed in Section 2.5. The simplicity and economy of expressing quadrature weights, 

derivatives and interpolants all in terms of the barycentric weights is appealing. For this 

reason, we first consider calculation of the barycentric weights.  

If continued products are used in the calculation of the weights, e.g. Eq. (2.1), it can be tedious 

to calculate 𝜌̃𝑛 and other parameters in the proportionality constants in Eq. (2.64).  A 

somewhat simpler alternative is to ignore 𝜌̃𝑛 and the other constant terms and determine the 

proportionality constant from the integral of unity. For example, on [0,1], ∑𝑊𝑖 = 1/(𝛾 + 1), 

where γ = 1, 2 and 3 for planar, cylindrical and spherical coordinates, respectively. 

 2.4.1 Barycentric Weights 

The barycentric weights can be calculated directly using the product relationship in Eq. (2.1) or 

(2.2) or they can be calculated from the derivatives of the monic polynomials as shown in Eq. 

(2.4). Simplifications can be made for the ultraspherical cases, α = β, regardless of the 

calculation procedure. 

The direct use of the weights is problematic for large n. Eq. (2.4) relates the weights to the 

monic polynomial and its derivatives. Normal 64 bit double precision arithmetic can represent 

numbers in the range of 2.2x10-308 to 1.8x10+308. The maximum value of a monic Legendre 

polynomial is 1/ρn, Eqs. (2.15) and (2.23), which is approximately 10-300 at n = 1000 for 

calculations on [-1,1] and at n = 500 on [0,1], Eq. (2.17). Furthermore, calculation of 

quadrature weights requires that these numbers be squared which reduces the maximum n by 

another factor of two. To avoid this limitation, we will usually work with weights which are 

normalized by the leading coefficient, ρn, for the polynomials under consideration:  

 
𝑊̂𝑖

𝑏 =
𝑊𝑖

𝑏

𝜌𝑛
=

1

𝜌𝑛𝑝̂𝑛
′ (𝑥𝑖)

 (2.66) 

Working with normalized weights, designated by the hat (^), causes little difficulty and it insures 

the values remain in a range which is valid for computations. 

For the ultraspherical cases, α = β, on the interval [-1,1] the roots are symmetrically located 

about zero, so only half of the weights need to be calculated. For an odd number of roots, the 

center root is zero. Consider an odd number of interior points, the continued product 

representation from Eq. (2.1), simplifies as follows: 
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𝑝̂𝑛
′ (𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑛+1

𝑗=0
𝑗≠𝑖

 

= (𝑥𝑖 − 𝑥0)(𝑥𝑖 − 𝑥1)… (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)… (𝑥𝑖 − 𝑥𝑛)(𝑥𝑖 − 𝑥𝑛+1) 

= (𝑥𝑖 − 𝑥0)(𝑥𝑖 − 𝑥1)… (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)… (𝑥𝑖 + 𝑥1)(𝑥𝑖 + 𝑥0) 

= (𝑥𝑖
2 − 𝑥0

2)(𝑥𝑖
2 − 𝑥1

2)… (𝑥𝑖
2 − 𝑥𝑖−1

2 )(𝑥𝑖
2 − 𝑥𝑖+1

2 )… (𝑥𝑖)(2𝑥𝑖) 

= 2𝑥𝑖
2  ∏(𝑥𝑖

2 − 𝑥𝑗
2)

𝑛/2

𝑗=0
𝑗≠𝑖

 

(2.67) 

for i = 1,…,n/2. In our notation n/2 is truncated to an integer, i.e. rounded toward zero. The 

points at the right end can be paired up with those on the left end. The only roots which cannot 

be paired are the zero root and the one at -xi (yielding the 2xi term) The derivative for the 

center zero root is given by:  

 

𝑝̂𝑛
′ (𝑥𝑛/2+1) = ∏(−𝑥𝑗

2)

𝑛/2

𝑗=0

 (2.68) 

The derivatives and weights alternate in sign. For an odd polynomial the weights are 

symmetric about the center weight, so 𝑝̂𝑛
′ (𝑥𝑛+1−𝑖) = 𝑝̂𝑛

′ (𝑥𝑖). From Eq. (2.68) we see the weight 

at the center point is negative when n/2 is even and positive when it is odd. Consequently, the 

endpoint values are always positive. 

For an even number of points there is no center point, so the derivatives are given by: 

 

𝑝̂𝑛
′ (𝑥𝑖) = 2𝑥𝑖  ∏(𝑥𝑖

2 − 𝑥𝑗
2)

𝑛/2

𝑗=0
𝑗≠𝑖

   (2.69) 

for i = 1,…,n/2. The values are antisymmetric about the center, so 𝑝̂𝑛
′ (𝑥𝑛+1−𝑖) = −𝑝̂𝑛

′ (𝑥𝑖). The 

values alternate sign with the first value always negative and the last value always positive. 

The easiest way to remember the signs for the barycentric weights is to remember the last one 

is always positive and that they alternate in sign. 

If the roots are calculated using the shortcut procedure, then 𝒙2 = (1 + 𝝃)/2. If calculated 

directly before conversion, the expressions above simplify to: 
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𝑝̂𝑛
′ (𝑥𝑖) = (

1

2
)

𝑛
2
(1 + 𝜉𝑖) ∏(𝜉𝑖 − 𝜉𝑗)

𝑛 2⁄

𝑗=0
𝑗≠𝑖

  and 

𝑝̂𝑛
′ (𝑥𝑛 2⁄ +1) = (

−1

  2
)

(
𝑛
2
+1)

∏(1 + 𝜉𝑗) 

𝑛 2⁄

𝑗=0

for 𝑛 odd, and 

𝑝̂𝑛
′ (𝑥𝑖) = (

1

2
)

(
𝑛
2
−1)

√(1 + 𝜉𝑖)/2 ∏(𝜉𝑖 − 𝜉𝑗)

𝑛 2⁄

𝑗=0
𝑗≠𝑖

 for 𝑛 even 

(2.70) 

The alternative method of calculation is based on Eq. (2.4). The normalized barycentric 

weights on [-1,1] are: 

 𝑊̂𝑖
𝑏 = [𝜌𝑛𝑝̂𝑛

′ (𝑥𝑖)]
−1 = −[(1 − 𝑥𝑖

2) 𝑃𝑛
′(𝑥𝑖)]

−1   for  𝑖 = 1, … , 𝑛 

𝑊̂0
𝑏 = [𝜌𝑛𝑝̂𝑛

′ (𝑥0)]
−1 = −[2𝑃𝑛(−1)]−1 

𝑊̂𝑛+1
𝑏 = [𝜌𝑛𝑝̂𝑛

′ (𝑥𝑛+1)]
−1 = [2𝑃𝑛(1)]−1 

(2.71) 

The endpoint values are easily calculated using the expressions for the endpoints of the 

polynomials, Eq. (2.11).  

The derivatives for the interior weights in Eq. (2.71) can be simplified for the ultraspherical 

polynomials, α = β. The shortcut polynomials use the roots of polynomials with the given α and 

β = ±½. With the roots ξi the positive roots are related by 𝑥𝑛−𝑛 2⁄ +𝑖 = √(1 + 𝜉𝑖)/2.  Substituting 

the derivatives from Eqs. (2.30) and (2.31) into Eq. (2.71) gives the following expressions for 

the interior barycentric weights for the ultraspherical polynomials:  

 
𝑊̂𝑗

𝑏 = − [√2 𝑎̃𝑛√(1 − 𝜉𝑖)(1 − 𝜉𝑖
2) 𝑃

𝑛 2⁄

(𝛼,−
1
2
) ′

(𝜉𝑖)]

−1

  for 𝑛 even 

𝑊̂𝑗
𝑏 = − [𝑎̃𝑛(1 − 𝜉𝑖

2) 𝑃
𝑛 2⁄

(𝛼,+
1
2
) ′

(𝜉𝑖)]

−1

    and 

𝑊̂𝑛 2+1⁄
𝑏 = − [𝑎̃𝑛𝑃

𝑛 2⁄

(𝛼,+
1
2
)
(−1)]

−1

      for 𝑛 odd 

(2.72) 

where again i = 1,…,n/2, j = n – n/2 + i, with n/2 rounded down to an integer. Eqs. (2.18) and 

(2.21) define the normalizing constants in terms of endpoint values, Eq. (2.11). The values of 

primary interest are: 𝑎̃𝑛 = 1 for the Gauss case, α = β = 0, while for the Lobatto case, α = β = 1, 

𝑎̃𝑛 = (𝑛 + 1) (𝑛 2 + 1)⁄⁄ , which is 2 for odd n since n/2 is rounded down.  

Since these weights correspond to the positive roots xj, those for the negative roots must 

account for the alternating signs of the weights discussed above. They are given by: 

 𝑊̂𝑖
𝑏 = (−1)𝑛+1 𝑊̂𝑛+1−𝑖

𝑏  (2.73) 
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for i = 1,…,n/2.  The weights for odd n are symmetric about the center, while for even n they 

are antisymmetric. Also, the center weight alternates in sign with n/2 as discussed below Eq. 

(2.68). 

Most texts do not give the analytical expression for the center weight for odd n. After 

substitution for the endpoint expressions, the weights for the two endpoints and for the center 

point for odd n is:  

 
𝑊̂0

𝑏 = −[2𝑃𝑛(−1)]−1 = (−1)(𝑛+1)
𝑛! Γ(𝛽 + 1)

2 Γ(𝑛 + 𝛽 + 1)
 

𝑊̂𝑛+1
𝑏 = [2𝑃𝑛(1)]−1 =

𝑛! Γ(𝛼 + 1)

2 Γ(𝑛 + 𝛼 + 1)
 

𝑊̂𝑛 2+1⁄
𝑏 = −

𝑃
𝑛 2⁄

(𝛼,+
1
2
)
(1)

𝑃
𝑛 2⁄

(𝛼,+
1
2
)
(−1)

 [
1

𝑃𝑛
(𝛼,𝛼)(1)

] = (−1)(
𝑛
2
+1)

√𝜋 𝑛! Γ (
𝑛
2 + 𝛼 + 1)

2 Γ(𝑛 + 𝛼 + 1)Γ (
𝑛
2 + 11

2
)
 

(2.74) 

The first two formulas above apply for all n and the last only for odd n. In our notation n/2 is 

always rounded down to an integer. 

The relationships above are for the weights on the interval [-1,1]. Using Eq. (2.17), they may 

be converted to the corresponding weights on [0,1] by:  

 𝑊̃𝑖
𝑏 = 2(𝑛+1)𝑊𝑖

𝑏  

𝑊̂̃𝑖
𝑏 =

𝑊̃𝑖
𝑏

𝜌̃𝑛
=

2(𝑛+1)𝑊𝑖
𝑏

𝜌̃𝑛
=

2(𝑛+1)𝜌𝑛𝑊̂𝑖
𝑏

𝜌̃𝑛
= 2 𝑊̂𝑖

𝑏 
(2.75) 

As before, the tilde (~) designates values on [0,1] and the hat (^) designates normalized 

values. The normalized weights on [0,1] use both decorations. The relationship between the 

normalized leading coefficients is given in Eq. (2.17). 

For symmetric problems, the barycentric weights appear in Eq. (2.2). When solving differential 

equations with MWR, the symmetry about x = 0 forms the boundary condition, so no point is 

needed there. The points are numbered starting with 1, while n is the last interior point as 

before. The boundary point, xn+1 = 1, is used to satisfy a condition at the external boundary. 

The symmetric cases only make sense on the interval [0,1], because radial polar and spherical 

coordinates are nonnegative. Nevertheless, the calculations are performed for [-1,1] and then 

converted.  

The points for symmetric problems are the roots of the Jacobi polynomials with the values of α 

and β in Table 2.1, i.e. β = -½, 0, ½ for planar, cylindrical and spherical coordinates and α = 0 

or 1 for Gauss or Lobatto quadrature, respectively. The symmetric cases are closely related to 

the shortcut cases discussed above. The roots on the interval [-1,1] are converted by 𝒙2 =

(1 + 𝝃)/2. The weights can be calculated with a continued product:  
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𝑊̃𝑖
𝑏 = 

[
 
 
 
 

 ∏(𝑥𝑖
2 − 𝑥𝑗

2)

𝑛+1

𝑗=1
𝑗≠𝑖 ]

 
 
 
 
−1

= (2)𝑛  

[
 
 
 
 

 ∏(𝜉𝑖 − 𝜉𝑗)

𝑛+1

𝑗=1
𝑗≠𝑖 ]

 
 
 
 
−1

= 2𝑛𝑊𝑖
𝑏 (2.76) 

for i = 1, …, n+1. The weights are normalized with the leading coefficient of the Jacobi 

polynomial as in Eq. (2.66). Since there is one less point, the normalized weights are the same 

on [0,1] and [-1,1], i.e. 𝑊̂̃𝑖
𝑏 =  𝑊̂𝑖

𝑏, which differs from the nonsymmetric case, Eq. (2.75). 

The barycentric weights for symmetric problems bear the following relationships to the Jacobi 

polynomials: 

 𝑊̂𝑖
𝑏 = −[(1 − 𝜉𝑖)𝑃𝑛

′(𝜉𝑖)]
−1  for 𝑖 = 1, . . , 𝑛, and 

𝑊̂𝑛+1
𝑏 = 1 𝑃𝑛⁄ (1) 

(2.77) 

2.4.2 Gaussian Quadrature Weights 

Gaussian quadrature has been studied more heavily than any of the others. It uses the roots of 

Legendre polynomials, α = β = 0. Starting with Eq. (2.64) several different formulas can be 

developed using the relationships described in Sections 2.1 and 2.2. The following are valid 

formulas for calculating the Gaussian quadrature weights: 

 
𝑊𝑖 =

2

(1 − 𝑥𝑖
2)[𝑃𝑛

′(𝑥𝑖)]2 
 

=  
2(1 − 𝑥𝑖

2)

[𝑛 𝑃𝑛−1(𝑥𝑖)]2 
 

=  
2(1 − 𝑥𝑖

2)

[(1 − 𝑥𝑖
2)𝑃𝑛

′(𝑥𝑖) − 𝑥𝑖𝑃𝑛(𝑥𝑖)]2 
 

=  
2(1 − 𝑥𝑖

2)

[𝑛 𝑃𝑛−1(𝑥𝑖) − (𝑛 + 1)𝑥𝑖𝑃𝑛(𝑥𝑖)]2 
 

=
2

∑ (2𝑘 + 1)(𝑃𝑘(𝑥𝑖))
2𝑛−1

𝑘=0

 

= 2(1 − 𝑥𝑖
2)(𝑊̂𝑖

𝑏)
2
 

(2.78) 

The first expression is directly from Eq. (2.64) with α = β = 0. The second results by substitution 

of Eq. (2.41) with 𝑃𝑛(𝑥𝑖) = 0. The third is due to Yakimiw (1996) and is claimed to produce 

more accurate results. The fourth is derived from the third expression by substitution of Eq. 

(2.41) with the 𝑃𝑛(𝑥𝑖) term retained. The fifth, was used by Lether (1978), who claimed it was 

more accurate. A general Jacobi-Gauss formula of this type is given by Shen, et al. (2011) and 

others. The last formula, in terms of barycentric weights, is found using Eq. (2.71).  

Yakimiw developed the third expression by forcing 𝑑𝑊(𝑥) 𝑑𝑥 = 0⁄  at the root to reduce the 

sensitivity of the weights to errors in the roots. It can also be derived by linearizing the first 

expression and using a Newton-Raphson update to correct for small errors in x. Yakimiw 

apparently calculated first derivatives with Eq. (2.41), if so, the fourth formula was actually 
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used.  By comparing the first to the third expression and the second to the fourth, it is apparent 

that a small correction term has been added. Yakimiw also set higher derivatives of W(x) to 

zero to derive expressions which are even less sensitive to errors in the roots. However, he 

states that only the first correction term is needed if the root calculations are iterated to 

roundoff conditions. These claims are investigated below in Appendix A.1. 

We note the boundary weights are zero, W0 = Wn+1 = 0. Combining the last expression with Eq. 

(2.74) gives the following analytical expression for the center weight with an odd number of 

points:  

 

𝑊𝑛 2+1⁄ =
𝜋

2
[

(
𝑛
2) !

Γ (
𝑛
2 + 11

2
)
]

2

 (2.79) 

Expressions in terms of the shortcut polynomials can be found by substitution of Eq. (2.72) into 

the last expression of Eq. (2.78): 

 
𝑊𝑗 =

1

2(1 − 𝜉𝑖
2)[𝑃

𝑛 2⁄

(0,−1
2
) ′
(𝜉𝑖)]2 

 for 𝑛 even, and  

=
1

(1 + 𝜉𝑖)(1 − 𝜉𝑖
2)[𝑃

𝑛 2⁄

(0,+1
2
) ′

(𝜉𝑖)]2 
 for 𝑛 odd  

(2.80) 

for i = 1,…,n/2, j = n – n/2 + i where n/2 is rounded down to an integer. Since the values are 

symmetric about zero, the weights are copied, 𝑊𝑖 = 𝑊𝑛+1−𝑖. The weights are divided by 2 to 

obtain weights for the interval [0,1]. 

2.4.3 Lobatto Quadrature Weights 

Lobatto quadrature includes weights at both endpoints. As shown by Krylov (1962) the 

polynomial weighting function must be zero at both points. Since the weight function for Jacobi 

polynomials is 𝜔(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽, Jacobi-Gauss quadrature with α = β = 1 can be 

adapted. The more common developments of Lobatto quadrature are based on Legendre 

polynomials, by finding either the roots of 𝑃𝑛
(0,0)(𝑥) − 𝑃𝑛+2

(0,0)
(𝑥) or (1 − 𝑥2)𝑃𝑛+1

(0,0) ′
(𝑥). From 

Section 2.2, these three approaches are related by Eqs. (2.40) and (2.42), so all will produce 

the same roots.  

We start again with Eq. (2.64), substitute α = β = 1, and divide the Jacobi-Gauss weight by 

(1 − 𝑥𝑖
2) as in Eq. (2.65), which results in the first expression below. From that starting point, 

several other representations are developed: 
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 𝑊𝑖 =

8(𝑛 + 1)

(𝑛 + 2)[(1 − 𝑥𝑖
2)𝑃𝑛

(1,1) ′
(𝑥𝑖)]2 

 

=
8(𝑛 + 1)

(𝑛 + 2)[(1 − 𝑥𝑖
2)𝑃𝑛

(1,1) ′(𝑥𝑖) − 2𝑥𝑖𝑃𝑛
(1,1)(𝑥𝑖)]

2 
 

=
2(𝑛 + 2)(𝑛 + 1)

[(1 − 𝑥𝑖
2)𝑃𝑛+1

(0,0) ′′(𝑥𝑖) − 2𝑥𝑖𝑃𝑛+1
(0,0) ′(𝑥𝑖)]2 

 

=  
2

(𝑛 + 2)(𝑛 + 1)[𝑃𝑛+1
(0,0)

(𝑥𝑖)]2 
 

=  
8(𝑛 + 1)

(𝑛 + 2)
(𝑊̂𝑖

𝑏)
2
 

(2.81) 

for i = 1,…,n. The second applies a correction to the first found by setting 𝑑𝑊(𝑥) 𝑑𝑥 = 0⁄  at the 

root. The third formula is given by Yakimiw. It is equivalent to the second when Eq. (2.27) is 

substituted. The third expression is commonly reported with the correction term removed (the 

second denominator term). The fourth expression is another commonly reported formula using 

Legendre polynomials. It is derived from the third by substitution of Eq. (2.39). Yakimiw shows 

that no correction term is required to produce accuracy equivalent to the second and third 

formulas. The last results from substituting the relationships for the barycentric weights, Eq. 

(2.71).  

Combining the last expression with Eq. (2.74) gives the following analytical expression for the 

endpoint weights and the center weight with an odd number of points:  

 
𝑊0 = 𝑊𝑛+1 =

2

(𝑛 + 2)(𝑛 + 1)
 

𝑊𝑛 2+1⁄ =
2𝜋

(𝑛 + 2)(𝑛 + 1)
[

(
𝑛
2 + 1) !

Γ (
𝑛
2 + 11

2
)
]

2

 

(2.82) 

where n/2 is rounded down to an integer. Expressions using the shortcut polynomials can be 

found by substitution of Eq. (2.72) into the last expression of Eq. (2.81). Since the relationship 

is so simple, the shortcut weights are not reproduced here. The weights are divided by 2 to 

obtain weights for the interval [0,1]. 

2.4.4 Radau Quadrature Weights 

Radau quadrature is similar to Lobatto quadrature but includes a weight at only one endpoint. 

We call it Radau-right if the weight is at x = 1 and Radau-left if the weight is a x = -1. The 

development for the two cases are analogous, so only the Radau-right case is described in 

any detail. 

Krylov (1962) states that the polynomial weight function, ω(x), must be zero at the point where 

the quadrature weight is desired. Since the Jacobi weighting function is 𝜔(𝑥) =

(1 − 𝑥)𝛼(1 + 𝑥)𝛽, the weight will be zero at the right end when α = 1 and β = 0. Following the 
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same type of approach as used for Lobatto quadrature, substitute the values for α and β into 

Eq. (2.64), and divide the Jacobi-Gauss weight by 1- xi. This approach differs from the normal 

development of Radau quadrature which uses the zeros of the combination of Legendre 

polynomials, 𝑃𝑛
(0.0)

- 𝑃𝑛+1
(0.0)

. Since the Legendre polynomials are unity at the right end, this 

combination will be zero there. It can also be shown that [Shen, et al. (2011), p. 75]:  

  (1 − 𝑥)𝑃𝑛
(1,0)

= 𝑃𝑛
(0,0)

− 𝑃𝑛+1
(0,0)

 (2.83) 

so the two approaches are related. Several formulas for Radau-right quadrature weights are:  

 
𝑊𝑖 =

4

(1 − 𝑥𝑖
2)(1 − 𝑥𝑖) [𝑃𝑛

(1,0) ′(𝑥𝑖)]
2

 
 

=  
1 + 𝑥𝑖

[(𝑛 + 1) 𝑃𝑛
(0,0)(𝑥𝑖)]

2 

=  
1

(1 + 𝑥𝑖) [𝑃𝑛
(0,0) ′(𝑥𝑖)]

2 

=
4(1 + 𝑥𝑖)

[(1 − 𝑥𝑖
2)𝑃𝑛

(1,0) ′(𝑥𝑖) − 1
2
(1 + 3𝑥𝑖)𝑃𝑛

(1,0)(𝑥𝑖)]
2

 
 

= 4(1 + 𝑥𝑖)(𝑊̂𝑖
𝑏)

2
 

(2.84) 

The first formula follows directly from Eq. (2.64), while the second and third are commonly 

given in other texts. The fourth applies a correction to the first to reduce sensitivity to errors in 

the roots, see Section 2.4.7. The last results from substituting the relationships for the 

barycentric weights, Eq. (2.71). The endpoint weight at the right end is found by substitution of 

Eq. (2.74) into the last expression: 

 
𝑊𝑛+1 =

2

(𝑛 + 1)2
 (2.85) 

Equivalence of the first and third expressions of Eq. (2.84) can be shown by first using Eq. 

(2.35) with α = 1 and β = 0, then Eq. (2.83) and finally Eq. (2.40) together with 𝑃𝑛
(1,0)(𝑥𝑖) =

𝑃𝑛
(0,0)

(𝑥𝑖) − 𝑃𝑛+1
(0,0)

(𝑥𝑖) = 0:  

 
(1 − 𝑥𝑖

2)𝑃𝑛
(1,0) ′(𝑥𝑖) =

2𝑛(𝑛 + 1)

2𝑛 + 1
 𝑃𝑛−1

(1,0)(𝑥𝑖) 

=
2𝑛(𝑛 + 1)

(2𝑛 + 1)(1 − 𝑥𝑖)
(𝑃𝑛−1

(0,0)(𝑥𝑖) − 𝑃𝑛
(0,0)(𝑥𝑖)) 

=
2(1 − 𝑥𝑖

2)

(1 − 𝑥𝑖)
𝑃𝑛

(0,0) ′(𝑥𝑖),   or 

(1 − 𝑥𝑖)𝑃𝑛
(1,0) ′(𝑥𝑖) = 2 𝑃𝑛

(0,0) ′(𝑥𝑖) 

(2.86) 
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The last expression clearly shows equivalence of the first and third expressions in Eq. (2.84). 

Equivalence of the second and third expressions of Eq. (2.84) can be shown using Eq. (2.41) 

together with the recurrence relation, Eq. (2.25), to give:  

 (1 − 𝑥𝑖
2)𝑃𝑛

(0,0) ′(𝑥𝑖) = (𝑛 + 1) (𝑥𝑖  𝑃𝑛
(0,0)(𝑥𝑖) − 𝑃𝑛+1

(0,0)(𝑥𝑖)) 

= −(𝑛 + 1)(1 − 𝑥𝑖) 𝑃𝑛
(0,0)(𝑥𝑖),   or 

(1 + 𝑥𝑖)𝑃𝑛
(1,0) ′(𝑥𝑖) = −(𝑛 + 1) 𝑃𝑛

(0,0)(𝑥𝑖) 

(2.87) 

The points and weights of the Radau-left quadrature are the mirror image of those for the 

Radau-right quadrature. The Radau-left quadrature uses the roots of the Jacobi polynomial 

with α = 0 and β = 1, or the following sum of Legendre polynomials which are equivalent due to 

the identity: 

  (1 + 𝑥)𝑃𝑛
(0,1)

= 𝑃𝑛
(0,0)

+ 𝑃𝑛+1
(0,0)

  (2.88) 

The resulting expressions for the weights are like Eq. (2.84), but with 1 + xi replaced by 1 - xi 

and vice versa and with the alternate Jacobi polynomial substituted: 

 
𝑊𝑖 =

4

(1 − 𝑥𝑖
2)(1 + 𝑥𝑖) [𝑃𝑛

(0,1) ′(𝑥𝑖)]
2

 
 

=  
1 − 𝑥𝑖

[(𝑛 + 1) 𝑃𝑛
(0,0)(𝑥𝑖)]

2 

=  
1

(1 − 𝑥𝑖) [𝑃𝑛
(0,0) ′(𝑥𝑖)]

2 

=
4(1 − 𝑥𝑖)

[(1 − 𝑥𝑖
2)𝑃𝑛

(0,1) ′(𝑥𝑖) + 1
2
(1 − 3𝑥𝑖)𝑃𝑛

(0,1)(𝑥𝑖)]
2

 
 

= 4(1 − 𝑥𝑖)(𝑊̂𝑖
𝑏)

2
 

(2.89) 

The weight at the left endpoint, W0, is the same as for the Radau right quadrature, Eq. (2.85). 

The Radau points are easy to calculate but are of limited usefulness for nonsymmetric 

problems. 

2.4.5 Symmetric Quadrature Weights 

Eq. (2.6) shows the type of quadrature formulas needed for symmetric problems. The formulas 

of interest can be developed from the general Jacobi-Gauss formula, Eq. (2.64), with the 

values of α and β in Table 2.1, i.e. β = -½, 0, +½ for planar, cylindrical and spherical 

coordinates and α = 0 or 1 for Gaussian or Lobatto quadrature, respectively. When α = 0 the 

quadrature is more precisely Jacobi-Gauss quadrature for planar and spherical cases since 

the term ξκ in the integrand of Eq. (2.6) is retained. When α = 1 the quadrature for planar and 

spherical cases is more precisely Jacobi-Gauss-Radau quadrature since a weight is employed 

at only one endpoint. However, for planar geometry the symmetric weights are identical to the 

right half of those for normal Gaussian or Lobatto quadrature. As discussed below, the other 
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geometries bear a simple relationship to nonsymmetric cases. For simplicity, we call it 

Gaussian quadrature when α = 0 and there is no weight on the boundary and Lobatto 

quadrature when α = 1 giving a weight on the boundary at x = 1. 

For symmetric problems the quadrature formulas of interest are like Eq. (2.6), where the 

abscissa are values of x2 on the interval [0,1]. If the roots are calculated on [-1,1] in the normal 

way, the values determined are called ξ. The values of x are the square roots of the translated 

roots, i.e. 𝒙 =  √(1 + 𝝃)/2.  

Starting with the roots of the Jacobi polynomials with α = 0 and β = -½, 0 or +½, the Gaussian 

quadrature weights are determined from Eq. (2.64). Since we are interested in the weights on 

[0,1], the constant 2α +β+1 can be dropped, but the factor ½ appearing in Eq. (2.6) is required. 

The Gaussian quadrature weights are: 

 
 𝑊𝑖 =

1

2(1 − 𝜉𝑖
2) [𝑃𝑛

(0,𝛽) ′(𝜉𝑖)]
2 

=
1 − 𝜉𝑖

2(1 + 𝜉𝑖)
(𝑊̂𝑖

𝑏)
2
 

(2.90) 

For calculation of the Lobatto weights on the interval [0,1], start with the roots of the Jacobi 

polynomials with α = 1 and β = -½, 0 or +½. The values are substituted into Eq. (2.64) with the 

constant 2α +β+1 again replaced with ½ and the result divided by xi = (1-ξi)/2 as was done for 

Lobatto and Radau quadrature. The quadrature weights are: 

 
 𝑊𝑖 =

𝑛 + 1

(𝑛 + 𝛽 + 1)(1 − 𝜉𝑖)(1 − 𝜉𝑖
2) [𝑃𝑛

(1,𝛽) ′(𝜉𝑖)]
2 

=
𝑛 + 1

(𝑛 + 𝛽 + 1)(1 + 𝜉𝑖)
(𝑊̂𝑖

𝑏)
2
 

(2.91) 

Table 2.1 shows the relationships between the weights for symmetric and nonsymmetric 

cases. The weights for planar and spherical geometry are related to the nonsymmetric cases 

for 2n and 2n+1, respectively. The cylindrical Gauss and Lobatto weights are related to the 

nonsymmetric Gauss and Radau right cases, respectively, with the same value of n. As one 

would expect, there is a simple relationship between the weights for the symmetric and the 

corresponding nonsymmetric problems. For planar and spherical geometry, the relationship 

between the barycentric weights is found by comparing Eq. (2.77) to (2.72). For cylindrical 

geometry, the relationship between the barycentric weights is found by comparing Eq. (2.77) to 

(2.71). The relationship between the Gaussian quadrature weights is found by comparing Eq. 

(2.90) to Eqs. (2.78) and (2.80). The relationship between the Lobatto quadrature weights for 

planar and spherical geometry is found by comparing Eq. (2.91) to Eq. (2.81) with the 

substitution of Eqs. (2.30) and (2.31).  
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Table 2.4 shows the ratio of the weights for symmetric and corresponding nonsymmetric 

problems. Since planar and spherical cases are directly related to shortcut formulas, the 

corresponding weights are to the right half of the full set. For the cylindrical cases, all weights 

are related. Keep in mind that the formulas for symmetric weights are on the interval [0,1], 

while for nonsymmetric cases, the formulas are for the interval [-1,1]. By integrating unity, the 

nonsymmetric quadrature weights must sum to 2, while the symmetric weights must sum to 

1/(γ+1), where γ = 0,1,2 for planar, cylindrical and spherical geometry. Table 2.4 shows the 

planar quadrature weights are identical to the right half of nonsymmetric weights. For 

cylindrical geometry, the quadrature weights are ¼ of a full set of nonsymmetric weights. For 

other cases the relationship depends on the values of the roots. All the symmetric weights bear 

a simple relationship to nonsymmetric weights. 

2.4.6 Clenshaw-Curtis Quadrature Weights 

The quadrature associated with the Chebyshev points is due to Clenshaw and Curtis (1960). 

As discussed above this quadrature differs from Chebyshev quadrature, because the 

integration weighting function is unity rather than 1/√1 − 𝑥2. Without the weighting function 

these roots give a quadrature which is exact for polynomials of degree n + 1. An example in 

Section 2.12 compares the the accuracy of the quadrature formulas. Clenshaw-Curtis is an 

interpolatory quadrature, so Eqs. (2.5) and (2.6) apply. For Cartesian coordinates, formulas for 

the weights are readily available [Funaro (1992), Trefethen (2000)]. They can be calculated by 

either direct integration or by using a fast Fourier transform.  

Although the fast Fourier transform is more efficient for large n, the direct method is sufficient 

for our purposes. The formulas are slightly different for odd and even n. The formula for even 

n is: 

 
𝑊0 = 𝑊𝑛+1 =

1

(𝑛 + 1)2
 

𝑊𝑖 = [ 1 − ∑
2cos(2𝑘𝜃𝑖)

4𝑘2 − 1

𝑛/2

𝑘=1

]
2

𝑛 + 1
 

(2.92) 

For odd n the formula is: 

Table 2.4 
Ratio Symmetric to Nonsymmetric Weights 

 Relative to α, β Quadrature Barycentric 

Planar Gauss Gauss, 2n 0, -½ 1 2xi  

Planar Lobatto Lobatto, 2n 1, -½ 1 2 [2𝑛+1

𝑛+1
] 𝑥𝑖  

Cylindrical Gauss Gauss, n 0, 0 1/4 2𝑥𝑖
2  

Cylindrical Lobatto Radau Right, n 1, 0 1/4 2𝑥𝑖
2  

Spherical Gauss Gauss, 2n+1 0, +½ 𝑥𝑖
2  2𝑥𝑖

2  

Spherical Lobatto Lobatto, 2n+1 1, +½ 𝑥𝑖
2  4𝑥𝑖

2  
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𝑊0 = 𝑊𝑛+1 =

1

(𝑛 + 1)2 − 1
 

𝑊𝑖 = [ 1 − (−1)𝑖𝑊0 − ∑
2cos(2𝑘𝜃𝑖)

4𝑘2 − 1

𝑛/2

𝑘=1

]
2

𝑛 + 1
 

Where 𝜃𝑖 = 𝑖 𝜋/(𝑛 + 1) are the roots of the Chebyshev polynomials of the second kind, Eq. 

(2.46). The roots and weights are symmetric, so only half the weights need to be calculated. 

For symmetric planar geometry, it is obvious to use the roots of the even polynomials on (-1,1), 

i.e. the right half of those used for nonsymmetric problems. Since the use of Chebyshev 

polynomials is not tied to the accuracy of integration, it is not obvious how to use them for 

symmetric problems in cylindrical and spherical geometry. It appears that the points are 

normally not altered for cylindrical and spherical geometry, so we simply use the same points 

as for planar geometry. The points are not shifted toward the boundary to improve the 

accuracy of the quadrature as they are for Gauss and Lobatto points, see Figs. 1.5, 1.6, 2.32, 

and 2.33. We calculate the quadrature weights for cylindrical and spherical geometry by the 

direct integration of Eq. (2.6). 

 

2.4.7 Higher Order Weight Calculations 

Many articles discuss the merits of the various formulas in Section 2.4 for calculating the 

weights [e.g. Lether (1978), Yakimiw (1996), Swarztrauber (2003)]. Most references consider 

only quadrature weights and often only Gaussian quadrature. For the weights of interest, there 

are some fundamental differences between the calculations and resultant errors with the 

various weight formulas.  

Yakimiw (1996) claims errors are mostly due to the sensitivity of the weights to the values of 

the roots. He reduces the sensitivity by setting 𝑑𝑊(𝑥) 𝑑𝑥 = 0⁄  at the root, where the weight 

expressions are treated as continuous functions. He also expands the weight function in a 

series and sets higher derivatives of W to zero, which further flattens W(x) near the root, 

reducing the sensitivity further. When the root calculations are iterated to roundoff, he states 

that zeroing higher derivatives is not needed to achieve the slowest rate of error growth; a first 

approximation is adequate. Additional analysis of formula accuracy and efficiency is given in 

Appendix A.1. 

Although there are several representations for the weights, all can be expressed in terms of 

the derivative of the polynomial for which the roots are determined. This form is convenient 

since the derivatives are also used in a Newton-Raphson or higher order iterative root 

calculation. Furthermore, the calculations in Appendix A.1 show these formulas are as 

accurate as any other. The interior barycentric weights can all be expressed by: 

 𝑊̂𝑖
𝑏 = 𝐶𝑛

𝑏[(1 + 𝑥𝑖)
𝜇(1 − 𝑥𝑖)

𝜈  𝑃𝑛
′(𝑥𝑖)]

−1 = 𝐶𝑛
𝑏[𝑟(𝑥𝑖)𝑃𝑛

′(𝑥𝑖)]
−1 (2.93) 

All the quadrature weight expressions are of the form: 
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 𝑊𝑖 = 𝐶𝑛[(1 + 𝑥𝑖)
𝜇(1 − 𝑥𝑖)

𝜈  𝑃𝑛
′(𝑥𝑖)]

−2 = 𝐶𝑛[𝑟(𝑥𝑖)𝑃𝑛
′(𝑥𝑖)]

−2     (2.94) 

where 𝑃𝑛
′(𝑥𝑖) are the derivatives of the Jacobi polynomials listed in Table 2.1 or their shortcut 

equivalents evaluated at the roots of the polynomial. The values of the parameters in Eqs. 

(2.93) and (2.94) are given in Table 2.5. The constants are given on the interval [-1,1] for 

nonsymmetric cases. As stated above the normalized barycentric weights should be doubled 

and quadrature weights halved for the interval [0,1]. For the symmetric cases, the constants 

are given on the interval [0,1] even though the roots are computed on [-1,1]. The normalizing 

factors, 𝜌𝑛 and 𝜌̃𝑛 = 2𝑛𝜌𝑛, for the barycentric weights are related by Eq. (2.17), see Eq. (2.75). 

As explained in Section 2.4.5, the nonsymmetric quadrature weights sum to 2, while the 

symmetric weights must sum to 1/(γ+1), where γ = 0,1,2 for planar, cylindrical and spherical 

geometry.  

To illustrate the basic idea behind the method, we develop a first approximation using a one 

term Taylor series approximation to Eqs. (2.93) and (2.94). The approximation is: 

  𝑟(𝑥)𝑃′(𝑥) = 𝑟(𝑥0)𝑃
′(𝑥0) + [𝑟′(𝑥0)𝑃

′(𝑥0) + 𝑟(𝑥0)𝑃
′′( 𝑥0)](𝑥 − 𝑥0)  (2.95) 

where 𝑟(𝑥) = (1 + 𝑥)𝜇(1 − 𝑥)𝜈 and x0 is the approximate root. The subscript on P has been 

omitted. After differentiating r(x) and substituting the Sturm-Liouville relationship, Eq. (2.32) or 

(2.58), for the second derivative, the equation simplifies to: 

 
 𝑟(𝑥)𝑃′(𝑥) = 𝑟(𝑥0)𝑃

′(𝑥0) [1 − (𝑐10 + 𝑐11𝑥0) 
(𝑥 − 𝑥0)

1 − 𝑥0
2 ] (2.96) 

Table 2.5 
Parameters in Weights, Eqs. (2.93) and (2.94) 

Barycentric Weights 𝐶𝑛 or 𝐶𝑛
𝑏  μ ν 

Full -1 1 1 

Shortcut Even −1 (𝑎𝑛√2)⁄  ½ 1 

Shortcut Odd −1 𝑎𝑛⁄  1 1 

Symmetric -1 0 1 

Quadrature Weights    

Gauss Full 2 ½ ½ 

Gauss Shortcut Even ½ ½ ½ 

Gauss Shortcut Odd 1 1 ½ 

Lobatto Full 8(𝑛 + 1) (𝑛 + 2)⁄  1 1 

Radau Right 4 ½ 1 

Radau Left 4 1 ½ 

Symmetric Gauss ½ ½ ½ 

Symmetric Lobatto  (𝑛 + 1) (𝑛 + 𝛽 + 1)⁄  ½ 1 
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Where 𝑐10 = 𝜈 − 𝜇 − 𝑏́ = 𝜈 − 𝜇 − (𝛼 − 𝛽) and 𝑐11 = 𝜈 + 𝜇 − 𝑎́ = 𝜈 + 𝜇 − (𝛼 + 𝛽 + 2). 

Substituting a simple Newton-Raphson linearization, like Eq. (2.48), produces the following 

more accurate expression when the roots are subject to small errors: 

 
 𝑟(𝑥)𝑃′(𝑥) = 𝑟(𝑥0)𝑃

′(𝑥0) [1 + (𝑐10 + 𝑐11𝑥0) 
𝑃(𝑥0)

(1 − 𝑥0
2)𝑃′(𝑥0)

] (2.97) 

This equation contains the basic value together with a correction. If the root is accurate, 

𝑃(𝑥0) = 0, so the correction term should be small. When the parameters for Gaussian 

quadrature are substituted, the third expression of Eq. (2.78) results. For Lobatto quadrature 

the second expression of Eq. (2.81) results, while for Radau quadrature the fourth expression 

of Eq. (2.84) results.  

We find that these formulas with the correction produce error growth rates ranging n1.4 to n1.9, 

which is not substantially better than some of the other formulas. The growth rate is n2 even 

when continued products are used to calculate the weights, Eqs. (2.67) to (2.70). This result 

would seem to conflict with the contentions of Yakimiw (1996). The utility of Eq. (2.97) depends 

on the accuracy of the coefficients and the roots and on the magnitude of the second term 

within the brackets. If the equation is applied with quad (128 bit) precision, the weight errors 

are ~10-25 or less, even if the roots have only double precision accuracy, i.e. ~10-16. If the roots 

have double precision accuracy and one uses the same double precision recurrence 

calculations to determine the coefficients of Eq. (2.97), the improvement is relatively small.  

Yakimiw determined roots using an iterative calculation with recurrence relations used to 

evaluate the polynomials. However, the accuracy for the weights near the boundary was 

improved by using Eq. (2.97) together with a slower but more accurate Fourier formula for the 

polynomials. Swartztrauber (2003) points out the true utility of the higher order weight 

calculations is that accurate weights can be calculated with less accurate roots. He found that 

with a Newton-Raphson root calculation, one polynomial evaluation could normally be 

eliminated (see discussion in Section 2.3.4). Appendix A.1 contains additional discussion and 

error analysis. 

To produce even higher order weight expressions, the terms in brackets of Eqs. (2.93) and 

(2.94) can be expanded in much the same way as the root expansion, Eq. (2.57). We will use: 

  
 𝑟(𝑥)𝑃′(𝑥) = 𝑃′(𝑥0) ∑

𝑑𝑗(𝑥0)

𝑘!
𝑞(𝑥0)

𝑘 = 𝑃′ [𝑑0 + 𝑑1𝑞 +
𝑑2

2
𝑞2 +

𝑑3

3!
𝑞3 + ⋯]

𝑀

𝑘=0

 (2.98) 

Where P is the polynomial of interest, x0 is a root subject to errors and 𝑞(𝑥) = 𝑃(𝑥) 𝑃′(𝑥)⁄  is the 

same quantity used in the root expansion, Eq. (2.57). Obviously, 𝑑0 = 𝑟(𝑥0), while the other 

coefficients in the expansion can be determined using the Sturm-Liouville relationship, Eq. 

(2.32) or in generic form by Eq. (2.58).  

The higher terms are found by setting the derivatives to zero in order to reduce the sensitivity 

of the function to errors in x: 
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 0 = 𝑃′′ [𝑑0 + 𝑑1𝑞 +

𝑑2

2
𝑞2 +

𝑑3

3!
𝑞3 + ⋯] + 𝑃′ [𝑑0

′ + 𝑑1
′ 𝑞 +

𝑑2
′

2
𝑞2 +

𝑑3
′

3!
𝑞3 + ⋯] 

+  𝑃′ [𝑑1 + 𝑑2𝑞 +
𝑑3

2
𝑞2 +

𝑑4

3!
𝑞3 + ⋯] 𝑞′ 

(2.99) 

This equation can be simplified by substituting the right hand side of Eq. (2.58)  for P" and 𝑞′ =

1 − 𝑏1(𝑥)𝑞 − 𝑏0(𝑥)𝑞2, where b0 and b1 are from the same equation. After removing the 

common factor P’ the equation simplifies to: 

 
 0 = [𝑑0 + 𝑑1𝑞 +

𝑑2

2
𝑞2 +

𝑑3

3!
𝑞3 + ⋯] (𝑏1 + 𝑏0𝑞) + [𝑑0

′ + 𝑑1
′ 𝑞 +

𝑑2
′

2
𝑞2 +

𝑑3
′

3!
𝑞3 + ⋯] 

+   [𝑑1 + 𝑑2𝑞 +
𝑑3

2
𝑞2 +

𝑑4

3!
𝑞3 + ⋯ ](1 − 𝑏1𝑞 − 𝑏0𝑞

2) 

(2.100) 

The collection of terms multiplying each power of q is set to zero, producing the following 

recursive formula for the higher coefficients: 

  𝑑𝑘+1 = −𝑑𝑘
′ + (𝑘 − 1)𝑏1𝑑𝑘 + 𝑘(𝑘 − 2)𝑏0𝑑𝑘−1  (2.101) 

After working through the algebra and simplifying, the expansion can be expressed by: 

  
 𝑟(𝑥)𝑃′(𝑥) = 𝑟(𝑥0)𝑃

′(𝑥0) ∑
𝑑̂𝑘(𝑥0)

𝑘!
𝑞̂(𝑥0)

𝑘

𝑀

𝑘=0

 (2.102) 

where: 𝑞̂(𝑥) = 𝑃(𝑥) [(1 − 𝑥2)𝑃′(𝑥)]⁄  and 𝑑̂𝑘(𝑥) = 𝑐𝑘0 + 𝑐𝑘1𝑥 + ⋯+ 𝑐𝑘𝑘𝑥𝑘. The terms through M 

= 3 are:  

 𝑐00 = 1 

𝑐10 = 𝜈 − 𝜇 − 𝑏́ 

𝑐11 =  𝜈 + 𝜇 − 𝑎́ 

𝑐20 = (𝜈 − 𝜇)𝑐10 − 𝑐11 + 𝑐́ 

𝑐21 = (𝜈 − 𝜇)𝑐11 + (𝜈 + 𝜇 − 2)𝑐10 

𝑐22 = (𝜈 + 𝜇 − 1)𝑐11 − 𝑐́ 

𝑐30 = (𝑐20 + 𝑏́𝑐10)(𝜈 − 𝜇) + (𝑐́ − 𝑐11)𝑏́ − 𝑐21 

𝑐31 = (𝑎́𝑐10 + 𝑏́𝑐11 + 𝑐21)(𝜈 − 𝜇) + (𝑏́𝑐10 + 𝑐20)(𝜇 + 𝜈) + (𝑐́ − 𝑐11)𝑎́ − 2(𝑏́𝑐10 + 𝑐22) − 4𝑐20 

𝑐32 = (𝑎́𝑐11 + 𝑐22)(𝜈 − 𝜇) + (𝑎́𝑐10 + 𝑏́ 𝑐11 + 𝑐21)(𝜇 + 𝜈) − 2𝑎́𝑐10 − (𝑐́ + 𝑐11)𝑏́ − 3𝑐21 

𝑐33 = (𝑎́𝑐11 + 𝑐22)(𝜈 + 𝜇) − (𝑐́ + 𝑐11)𝑎́ − 2𝑐22 

Eq. (2.58) gives the values of 𝑎́, 𝑏́ and 𝑐́.  

Figs. 2.15 and 2.16 show examples of the sensitivity of weight errors to errors in the roots 

when the weights are calculated with Eq. (2.102) substituted into Eqs. (2.93) and (2.94). Errors 

in the Lobatto quadrature weights are shown in Fig. 2.15 and errors in the barycentric weights 

for Radau points are shown in Fig. 2.16. In each case n = 14 and the error is shown for the 

weight nearest the boundary. In most cases, the rate of convergence is linear with no 

correction and the convergence rate increases with each increment of M, i.e. usually 𝜖𝑤 =

(𝜖𝑥)
(𝑀+1). Some formulas display second order convergence, equivalent to M = 1, without an 
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explicit correction term added, but these cases are exceptional (see Fig. 2.18 below for an 

example). 

In Section 2.3.3, the root estimation methods were found to produce maximum errors of 

approximately 10-7 when n = 14. The results in Figs. 2.15 and 2.16 suggest the estimated 

roots should produce weights with maximum accuracy when M = 2. Figs. 2.17, 2.18 and 2.19 

show the weight errors as a function of n and M when calculated with the estimated roots. 

Quadrature and barycentric weight errors are shown in Figs. 2.17 and 2.18 for Gauss, Lobatto 

and Radau points. Lobatto quadrature weight errors for symmetric problems are displayed in 

Fig. 2.19. For nonsymmetric problems, weights of maximum accuracy are obtained for n > 44, 

7 and 2 for M = 1, 2 and 3, respectively. For symmetric problems with cylindrical coordinates, 

the problems are like those for Gauss and Radau points, see Tables 2.1 and 2.4, so the 

accuracy is like that for nonsymmetric problems. For symmetric planar and spherical geometry, 

the problems are like nonsymmetric problems with shortcut calculations, so accuracy like the 

other cases is achieved with roughly half the value of n or n > 23, 3 and 1 for M = 1, 2 and 3, 

respectively. Except for n ≤ 2, accurate weights can be calculated directly from the estimated 

roots. Note that the barycentric weights for 

Gauss points, Fig. 2.18, do not require a first 

correction to achieve second order 

convergence. 

In section 2.3.4 the combination of accurate 

root estimates and higher order iteration was 

found to give accurate roots without iteration. 

The calculations presented here in Figs. 

2.17, 2.18, and 2.19 show that accurate 

weights can be calculated directly from the 

estimated roots. The only exceptions are n ≤ 

2, which is easily rectified by storing the 

exact roots for these few cases and 
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substituting them for the estimates. As a results, accurate roots and weights can be calculated 

directly from the estimated roots. No iterations are required and the polynomial and its first 

derivative are calculated only once. When shortcut polynomial recurrence calculations are 

used for the most common ultraspherical cases, the polynomial calculation requires O(5n2/4) 

floating point operations. All other operations are O(n).  

The principal advantage of the higher order weight calculation described here is that only a 

single calculation of the orthogonal polynomial is required for each root. A simple alternative is 

the to use Taylor series. Approximate values for polynomial and derivative are calculated 

during the root calculation, while Eq. (2.57) gives the correction to the roots. A simple two or 

three term Taylor series is all that is required to produce accurate values at the roots. This 

approach appears to produce a modest loss of accuracy, so was not used for that reason. 

2.4.8 Accuracy and Efficiency of Weight Calculations 

This section discusses the accuracy and efficiency of the barycentric and quadrature weight 

calculations. The accuracy and efficiency of the weight calculations has been the subject of 

many studies [e.g. Lether (1978), Yakimiw (1996), Swarztrauber (2003), Hale and Townsend 

(2013), Bogaert (2014)]. The eigenvalue method of Golub and Welsch (1969) is the most 

common method for calculating roots and weights, see Section 2.3.1. The weights can be 

determined from the first components of the associated eigenvectors or by using the weight 

formulas in Sections  2.4.1 to 2.4.5. Previous studies have found the eigenvector method to be 

more prone to rounding errors with error growth rates of n2. Recurrence calculations used in 

conjunction with the formulas are slightly more accurate, but the growth rates are still n1.5 to n2. 

Many applications of MWR produce accurate solutions with small n, n ≲ 10, so for those 

problems accuracy and efficiency is not an issue. However, some problems require larger n. 

Some global atmospheric models have used n of several thousand [Yakimiw (1996)]. 

If the calculations do not produce sufficient accuracy, there are potentially two solutions. Either 

the calculations can be performed with greater floating-point precision or possibly the 

calculation procedure can be improved. As of this writing, many computing systems provide 
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three levels of floating-point precision. If coded intelligently, most programming languages 

make it easy to change the precision. Often, 32 bit, 64 bit and 128 bit calculations are provided 

using the IEEE-754 specification. The precision is best described in terms of the machine 

epsilon, which is the smallest number which is significant relative to unity. The epsilon values 

are approximately 1x10-7, 2x10-16 and 2x10-34 for 32 bit, 64 bit and 128 bit calculations, 

respectively. This can be thought of as 7, 16 or 34 digits of precision. These alternatives will 

also be called single, double and quad precision. The code written in this project makes 

precision changes easy. However, there is a significant loss of efficiency when using higher 

precision calculations, and precision changes are difficult or impossibe to implement with some 

systems, so it is best to use calculation procedures which are as accurate as possible. For 

these reasons, the accuracy of various procedures was investigated. The details of this 

investigation are provided in Appendix A.1 and A.2, while the results and algorithms are 

summarized here. All of the results shown here use accurate initial estimates described in 

Section 2.3.3. For n < 4, more accurate roots are stored and used in place of the estimates. 

Higher order root and weight calculations are used so that iteration is not required and only 

one polynomial evaluation is needed.  

First, we compare results using recurrent 

calculation for the full polynomial with 

those using shortcut calculations. Fig. 

2.20 compares calculations for Gauss 

points. For the results reported here, the 

errors are maximum fractional errors, also 

called maximum relative errors defined by 

max
𝑖

(|𝜖𝑖/𝑊𝑖|), where ϵ are the errors and 

W are the “correct” values. The only 

exception is that errors in the roots are 

simply the maximum error. The reported 

growth rates are determined from the 

results for n > 40. Here the shortcut 

calculations are implemented using the third approach discussed in Section 2.3.4, i.e. the 

shortcut polynomials are calculated and the values converted to the corresponding full 

polynomial values using Eqs. (2.18), (2.21), (2.30) and (2.31). The shortcut calculations were 

performed on both the full interval [-1,1] and the shifted interval [0,1]. The figure shows that full 

calculations produce more accurate roots as discussed at the end of Section 2.3.3 (see Figs. 

2.11 and 2.12). However, if shifted shortcut calculations are used, the error growth rate is 

reduced from n0.9 to a modest n0.4. For this case full calculations give somewhat less accurate 

weights than the shifted shortcut calculations (n1.8 versus n1.4). For other quantities (see 

Appendix A.1) the observed differences between full calculations and shifted shortcut 

calculations are not large and overall neither method is clearly more accurate. The shortcut 

method is preferred since it is more efficient. 
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Figure 2.21 shows quadrature weight and 

root errors for Gauss, Lobatto and Radau 

quadrature when calculated with the 

noniterative higher order methods. The 

error growth rate for the roots is small, 

while for the quadrature weights it is 

n1.4-1.7. The accuracy is somewhat better 

than others have reported with either the 

Golub-Welch method or recurrence 

calculations [see Fig. 2.1, Hale and 

Townsend (2013)]. Based on the results 

of others and the analysis in Appendix 

A.1, we have concluded that the results in 

Fig. 2.21 are the best that can be 

achieved when the recurrence relationships are used to calculate the polynomials.  

The primary difficulty is that for large n, the accuracy of the recurrence calculations 

deteriorates near the boundaries. Yakimiw circumvented this inaccuracy problem by using an 

alternate Fourier method for calculating the polynomial values and derivatives near the 

boundary. His use of the Fourier calculation is the primary reason for his improved results. 

Swartztrauber’s Fourier method is somewhat similar. They both use the Fourier procedure to 

calculate the critical weights near the boundary. A key difference is that Yakimiw calculated 

roots using recurrence calculations, whereas Swartztrauber used Fourier calculations. Another 

difference is that Swartztrauber does all the calculations in terms of 𝜃 = arccos(𝑥) rather than 

x. The Fourier method for polynomial calculation requires computational effort of O(n2) 

involving transcendental functions, which are computationally intensive. 

Rather than use an inefficient Fourier method for polynomial calculation, Hale and Townsend 

(2013) used asymptotic approximations for the polynomials. They address Gaussian and 

Jacobi-Gauss quadrature strictly for n > 50. Appendix A.2 describes asymptotic calculations 

which have the advantage of both greater accuracy and greater efficiency. If n is large enough 

the efficiency is greater because there are no calculations of O(n2) which is the case for using 

the recurrence relationships or a Fourier method. As was the case with root estimation, 

asymptotic approximations for the Jacobi polynomials subdivide into those accurate near the 

boundary and those accurate away from the boundary. We will again refer to these as 

boundary and interior methods. The asymptotic approximations also involve trigonometric and 

Bessel functions, so they are computationally intensive even though the number of terms is 

much less than the with Fourier method. 

Appendix A.2 describes the construction of a composite scheme using recurrence relations 

together with boundary and interior asymptotic approximations. The composite algorithm uses 

cutoff values of n and error analysis to determine the best procedure to use; recurrent, 

boundary or interior. The procedure used varies for each point and for the interior asymptotic 
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method, the order of the approximation (number of terms) for each root is also determined. 

Although the scheme could be further optimized, the following procedure is simple and 

provides a good balance between accuracy and efficiency:  

• n ≤ nAsmp: the recurrence relationships are used exclusively 

• n > nAsmp: recurrence, interior and boundary calculations are used  

nAsmp = 40 was used in the results reported. Fig 2.22 shows computation times for calculation 

of the roots, quadrature weights and barycentric weights for Gauss, Lobatto and Radau points. 

Gauss and Lobatto quadrature required virtually the same times. The computing times were 

recorded on a typical 2019 laptop with an Intel Core i7-7600u, 2.8 GHz (2 cores and 4 logical 

processors). The GNU Fortran (gcc ver. 5.4.0, Cygwin) compiler was used. The calculations 

were repeated enough times to obtain reproducible timings. In order to avoid artificially good 

results due to cache reuse, etc., each calculation used separate areas of memory for the roots 

and weights.  

At very large n the computation is O(n2) with recurrent calculations and O(n) with composite 

calculations, as expected. Also at large n, the computing time for Lobatto or Gauss recurrent 

shortcut calculations, full Lobatto/Gauss calculations and Radau calculations are in the ratio of 

roughly 1:2:4. Also, the asymptotic Lobatto/Gauss to Radau calculations are about 1:2. The 

Radau calculations require more effort because all roots are unique. However, at small n the 

time appears to be dominated by overhead effects, e.g. function call overhead, so there is little 

difference between shortcut and full recurrent calculations. The breakeven point between 

recurrent and composite asymptotic calculations is n = 500 to 1000. Gauss or Lobatto points 

and weights with n = 100 can be calculated in only 25 or 60 μsec with recurrent and composite 

calculations, respectively, while a million points and weights can be calculated in less than 0.3 

sec. 

With nAsmp of 40 the switch from recurrent to composite method causes a factor of 3 to 4 

increase in computation time, but the overall time is so small it hardly seems relevant, so the 

small improvement in accuracy seems 

justified. For Gauss and Lobatto points 

and n = 44, the algorithm uses the 

boundary method for only one point, 

while recurrent calculations are used 

for 40% of the points. By n = 110, 

recurrent calculations are no longer 

used, while the boundary method is 

used for 9 points. At n = 2500, less 

than one percent (12 points) use the 

boundary method and of those using 

the interior method 86% use only 4 or 
n
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5 terms in the approximation. Additional details are given in Appendix A.2. 

The processor and compiler should produce code to utilize vector processing hardware. We 

were not able to produce vector calculations even with code that vectorizes on other systems. 

Based on published benchmarks, other compilers would likely be more efficient. Nevertheless, 

the calculations should provide a good indication of the tradeoffs between different calculation 

procedures.  

Figs. 2.23 through 2.27 show the absolute errors for the roots and relative or fractional errors 

for the weights when the composite formulas 

are used to calculate the polynomials. The 

figures include all the cases likely to be 

needed for MWR calculations on a finite 

domain. The barycentric weights are usually 

as accurate or slightly more accurate than 

the quadrature weights. Note that with only a 

few exceptions the error rises initially due to 

use of the recurrence calculations, but 
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ultimately the error is essentially constant. Only a few cases produced weight errors greater 

than 10-14. 

2.5 Nodal Differentiation Matrices 

To develop nodal approximations, derivatives of the basis functions in Eq. (2.1) are required. 

The first derivative of the Lagrange interpolating polynomials is straight forward. The only trick 

involved is to take the derivative of the logarithm of Eq. (2.1), thereby converting the continued 

product to a summation. For the nonsymmetric case, this approach leads to: 

 
 𝐴𝑖𝑗 =

𝑑ℓ𝑗(𝑥)

𝑑𝑥
|
𝑥𝑖

=
𝑝̂𝑛

′ (𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑝̂𝑛
′ (𝑥𝑗)

 =
𝑊𝑗

𝑏

(𝑥𝑖 − 𝑥𝑗)𝑊𝑖
𝑏

  for 𝑖 ≠ 𝑗,  and 

= ∑
1

𝑥𝑖 − 𝑥𝑘
            for 𝑖 = 𝑗

𝑛+1

𝑘=0
𝑘≠𝑖

  

(2.103) 

and for the symmetric case: 

 
 𝐴𝑖𝑗 =

2𝑥𝑖𝑝̂𝑛
′ (𝑥𝑖

2)

(𝑥𝑖
2 − 𝑥𝑗

2)𝑝̂𝑛
′ (𝑥𝑗

2)
=

2𝑥𝑖𝑊𝑗
𝑏

(𝑥𝑖
2 − 𝑥𝑗

2)𝑊𝑖
𝑏

   for 𝑖 ≠ 𝑗,  and 

= ∑
2𝑥𝑖

𝑥𝑖
2 − 𝑥𝑘

2              for 𝑖 = 𝑗

𝑛+1

𝑘=1
𝑘≠𝑖

  

(2.104) 

These expressions contain the barycentric weights, 𝑊𝑖
𝑏 = 1 𝑝̂𝑛

′ (𝑥𝑖)⁄ , which are common to the 

relationships for the interpolating polynomials, ℓ, and quadrature weights, W, so they have 

multiple uses. As an alternative to the equations above, the diagonal elements can be 

calculated so the row sums are zero. With Lobatto points, 𝐴𝑖𝑖 = 0 for i = 1,…n for 

nonsymmetric problems. These expressions are general for any set of points, but 

simplifications can be made in specific cases. Many texts develop one formula for Gauss 

points, another for Lobatto points, a third for Chebyshev points and so forth. Also, many times 

the formulas fail to include endpoints. There is no need to make distinctions for the different 

points, since the formulas above are valid for any choice of points, even equally spaced points. 

These formulas are especially useful since the barycentric weights are needed for other 

purposes, so they reduce redundancy in the calculations. The code box in section 2.3.1 shows 

concise code implementing this calculation along with the calculation of points and quadrature 

weights. 

Many texts and articles have claimed the original development of Eq. (2.103), some as late as 

almost 1990. I first found a version of it in Ferguson (1971) and programmed it in about 1972. I 

tested it by solving a problem with n = 45, which was thought to be enormous at the time. It is 

given by Michelsen and Villadsen (1972) without reference. The earliest reference I have found 

is Nielsen (1956, pp. 150-4). It is likely this formula is quite ancient. 
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Early descriptions of the method used a far less accurate procedure for calculating the 

differentiation matrices. Following Hamming (1962), the differentiation matrices and quadrature 

weights were determined by inverting the Vandermonde matrix [Villadsen (1970), Finlayson 

(1972)]. Due to the notoriously ill conditioned Vandermonde matrix, the accuracy of this 

approach is poor for n ≳ 10. This problem held back development of the method for large 

problems. Despite its limitations the approach was still in use beyond 1990. 

For the nonsymmetric case, the second derivative can easily be calculated from the first 

derivative approximation by a matrix multiply, i.e. B = AA, or: 

 
 𝐵𝑖𝑗 = ∑ 𝐴𝑖𝑘𝐴𝑘𝑗

𝑛+1

𝑘=0

 (2.105) 

For the symmetric cases, the Laplacian operator is not as simple as Eq. (2.105). Since the 

interpolating polynomial is even, its first derivative is odd.  The first derivative operator from Eq. 

(2.104) is only valid if it operates on a symmetric quantity.  Instead, a similar operator is 

needed for odd functions.  The Lagrange interpolating polynomial for an odd function is related 

to the even function interpolating polynomial by: 

 
 ℓ̂𝑖 =

𝑥

𝑥𝑖
∏

𝑥2 − 𝑥𝑗
2

𝑥𝑖
2 − 𝑥𝑗

2

𝑛+1

𝑗=1
𝑗≠𝑖

=
𝑥

𝑥𝑖
ℓ𝑖(𝑥

2) (2.106) 

The odd function interpolating polynomial and derivative operator are denoted with a hat (^). 

The direct differentiation of Eq. (2.106) gives: 

 
 𝐴̂𝑖𝑗 =

1

𝑥𝛾

𝑑

𝑑𝑥
[𝑥𝛾ℓ̂𝑗]𝑥𝑖

=
𝛾 + 1

𝑥𝑖
𝛿𝑖𝑗 +

𝑥𝑖

𝑥𝑗
𝐴𝑖𝑗 (2.107) 

where γ = 0,1,2 for planar, cylindrical and spherical coordinates. The Laplacian operator for a 

symmetric problem can be calculated by 𝑩 = 𝑨̂𝑨. 

The Laplacian operator, B, can also be determined by direct differentiation of Eq. (2.1).  For the 

nonsymmetric case, the values from direct differentiation are: 

 

𝐵𝑖𝑗 =
2𝑝̂𝑛

′ (𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑝̂𝑛
′ (𝑥𝑗)

[
 
 
 
 
 

∑
1

𝑥𝑖 − 𝑥𝑘

𝑛+1

𝑘=0
𝑘≠𝑖
𝑘≠𝑗 ]

 
 
 
 
 

= 2𝐴𝑖𝑗 (𝐴𝑖𝑖 −
1

𝑥𝑖 − 𝑥𝑗
)  for 𝑖 ≠ 𝑗,  and 

𝐵𝑖𝑖 = ∑

[
 
 
 
 
 

1

𝑥𝑖 − 𝑥𝑗
∑

1

𝑥𝑖 − 𝑥𝑘

𝑛+1

𝑘=0
𝑘≠𝑖
𝑘≠𝑗 ]

 
 
 
 
 

𝑛+1

𝑗=0
𝑗≠𝑖

= 𝐴𝑖𝑖
2 − ∑

1

(𝑥𝑖 − 𝑥𝑘)2
   

𝑛+1

𝑘=0
𝑘≠𝑖

  

(2.108) 

The corresponding expression for the symmetric case is: 



[101] 

 

 

𝐵𝑖𝑗 =
2𝑝̂𝑛

′ (𝑥𝑖
2)

(𝑥𝑖
2 − 𝑥𝑗

2)𝑝̂𝑛
′ (𝑥𝑗

2)

[
 
 
 
 
 

𝛾 + 1 + ∑
4𝑥𝑖

2

𝑥𝑖
2 − 𝑥𝑘

2

𝑛+1

𝑘=1
𝑘≠𝑖
𝑘≠𝑗 ]

 
 
 
 
 

= 2𝐴𝑖𝑗 (𝐴𝑖𝑖 +
𝛾 + 1

2𝑥𝑖
−

2𝑥𝑖

𝑥𝑖
2 − 𝑥𝑗

2)  for 𝑖 ≠ 𝑗  

𝐵𝑖𝑖 = 𝐴𝑖𝑖
2 +

𝛾 + 1

𝑥𝑖
𝐴𝑖𝑖 − ∑

4𝑥𝑖

(𝑥𝑖
2 − 𝑥𝑘

2)
2
  

𝑛+1

𝑘=1
𝑘≠𝑖

  

(2.109) 

As an alternative to the equations above, the diagonal elements can be calculated so the row 

sums are zero.  

The nodal differentiation matrices are subject to the same types of rounding errors discussed 

in Section 2.4.8. Since the barycentric weights are calculated accurately, the primary issue is 

the calculation of the differences in nodal values, xi - xj. If these terms are calculated directly, 

the error growth rate is O(n2). If the roots are calculated in θ coordinates, where 𝑥 = cos (θ), 

then differences can be calculated more accurately using the trig identity: 

 
 𝑥𝑖 − 𝑥𝑗 = cos 𝜃𝑖 − cos 𝜃𝑗 = −2 sin (

𝜃𝑖 + 𝜃𝑗

2
) sin (

𝜃𝑖 − 𝜃𝑗

2
) (2.110) 

The utility of Eq. (2.110) was tested by 

calculating some matrix error norms of the 

form ‖ 𝐴 − 𝐴̅‖/‖ 𝐴̅‖, where the overbar 

indicates an accurate matrix (quad 

precision). Several types of norms were 

considered, but they all give the same 

general picture. An example of these 

calculations is shown in Fig. 2.28 for the 

first derivative matrix and the stiffness 

matrices discussed in the next section. The 

results using Eq. (2.110) are labeled with θ, 

while the direct calculation is labeled with x. 

As we would expect, the error growth rates 

are O(n) when Eq. (2.110) is used and O(n2) when the quantities are directly calculated. The 

differences are small when recurrence calculations are used, n < 40. By n = 100, Eq. (2.110) 

is more accurate by an order of magnitude. 

2.6 Nodal Stiffness Matrices 

In finite element methods an alternate approximation is used for the Laplacian. It is called the 

stiffness matrix, which reveals the origins of these methods in structural mechanics. However, 

it is a general alternative representation of the Laplacian in weak form. We generalize it to 

some extent for use with collocation. It is easily calculated from the other arrays. For 

nonsymmetric problems:  
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  𝐶𝑖𝑗 = 𝛿𝑖,𝑛+1𝐴𝑛+1,𝑗 − 𝛿𝑖,0𝐴0,𝑗 − 𝑊𝑖𝐵𝑖𝑗 

      = ∑ 𝑊𝑘𝐴𝑘𝑖𝐴𝑘𝑗

𝑛+1

𝑘=0

= ∫
𝑑ℓ𝑖(𝑥)

𝑑𝑥

𝑑ℓ𝑗(𝑥)

𝑑𝑥
𝑑𝑥

1

0

 
(2.111) 

For symmetric problems there is no boundary point at i = 0, so that term is omitted and the A0,j 

term does not appear in Eq. (2.111). For further details see the discussion of the Galerkin 

method and method of moments in sections 3.1.2 and 3.1.3 of Chapter 3. As explained there, 

the top expression amounts to a simple rearrangement of the basic equations, so it is valid for 

any set of points.  

The validity of the second set of equalities depends on the accuracy of the quadrature. The 

integrand is a polynomial of degree 2n, so Lobatto and Radau quadrature are valid. It is also 

valid for Gauss points in symmetric problems. For nonsymmetric problems with Gauss points 

and for Chebyshev points, the top expression must be used to calculate the stiffness matrix. 

2.6.1 Matrix Symmetry with Gauss Points 

It is obvious that the stiffness matrix is symmetric whenever the second equality holds for Eq. 

(2.111), i.e. always for Radau and Lobatto points and for symmetric problems with Gauss 

points. From calculations, the stiffness matrix is known to be symmetric for nonsymmetric 

problems with Gauss points also. For this case, symmetry can be shown theoretically as well. 

The proof is presented, since it is instructive. The interval [-1,1] is used for convenience.  

Due to the symmetry of the points about the midpoint of the interval, the terms in the first 

derivative matrix are related by:  

 𝐴𝑖𝑗 = −𝐴𝑛+1−𝑖,𝑛+1−𝑗 (2.112) 

So the corner elements are symmetric, i.e. 𝐴0,𝑛+1 = −𝐴𝑛+1,0. Next, we show that the interior 

elements are symmetric using:  

 
𝑊𝑖𝐵𝑖𝑗 = ∫ ℓ𝑖

∗
1

−1

(𝑥)ℓ𝑗
′′(𝑥)𝑑𝑥 (2.113) 

for i = 1,..,n, j = 1,..,n and where:  

 
ℓ𝑖

∗(𝑥) =
𝑝𝑛(𝑥)

(𝑥 − 𝑥𝑖)𝑝𝑛
′ (𝑥𝑖)

= ℓ𝑖(𝑥)
1 − 𝑥𝑖

2

1 − 𝑥2
  

ℓ𝑖
∗ is a reduced polynomial which interpolates through only the interior points, while ℓi 

interpolates through the interior and boundary points. The interpolating polynomials are written 

in terms of monic Legendre polynomials, but the formula is unchanged when written with 

Legendre polynomials of conventional form (scaling factors cancel). The Gaussian quadrature 

is exact for Eq. (2.113) because the integrand is a polynomial of degree 2n – 2. The 

quadrature reduces to a single term because ℓ𝑖
∗(𝑥𝑗) = 𝛿𝑖𝑗. For additional background, see 

sections 3.1.2 describing the method of moments.  
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First, following Eq. (2.1) write the interpolating polynomials in terms of the Legendre 

polynomials: 

 
𝑊𝑖𝐵𝑖𝑗 = ∫

𝑞𝑖(𝑥)

𝑝𝑛
′ (𝑥𝑖)(1 − 𝑥𝑗

2)𝑝𝑛
′ (𝑥𝑗)

1

−1

𝑑2

𝑑𝑥2
[(1 − 𝑥2)𝑞𝑗(𝑥)]𝑑𝑥 (2.114) 

where 𝑞𝑖(𝑥) = 𝑝𝑛(𝑥) (𝑥 − 𝑥𝑖)⁄ . Next, rearrange and define an array V: 

 
𝑉𝑖𝑗 = (1 − 𝑥𝑖

2)𝑝𝑛
′ (𝑥𝑖)(1 − 𝑥𝑗

2)𝑝𝑛
′ (𝑥𝑗)𝑊𝑖𝐵𝑖𝑗 = ∫ (1 − 𝑥𝑖

2)𝑞𝑖(𝑥)
1

−1

𝑑2

𝑑𝑥2
[(1 − 𝑥2)𝑞𝑗(𝑥)]𝑑𝑥 (2.115) 

If V is symmetric then WB must be symmetric. Make the following substitution: 

 (1 − 𝑥𝑖
2) = (1 − 𝑥2) + (𝑥 − 𝑥𝑖)(𝑥 + 𝑥𝑖)  

After substitution V is: 

 
𝑉𝑖𝑗 = ∫ 𝑞̂𝑖(𝑥)

𝑑2𝑞̂𝑗(𝑥)

𝑑𝑥2
𝑑𝑥

1

−1

+ ∫ (𝑥 + 𝑥𝑖)𝑝𝑛(𝑥)
𝑑2𝑞̂𝑗(𝑥)

𝑑𝑥2
𝑑𝑥

1

−1

 (2.116) 

where 𝑞̂𝑖(𝑥) = (1 − 𝑥2)𝑞𝑖(𝑥) is an n + 1 degree polynomial with a leading coefficient of -1, so 

its second derivative is a n – 1 degree polynomial with a leading coefficient of -n(n+1). If the 

first term is integrated by parts and the terms in the second one are represented as a 

polynomial series, the following results: 

 
𝑉𝑖𝑗 = −∫ 𝑞̂𝑖

′(𝑥)𝑞̂𝑗
′(𝑥)𝑑𝑥

1

−1

− 𝑛(𝑛 + 1)∫ 𝑝𝑛(𝑥)(𝑝𝑛(𝑥) + … )𝑑𝑥
1

−1

 

= −∫ 𝑞̂𝑖
′(𝑥)𝑞̂𝑗

′(𝑥)𝑑𝑥
1

−1

− 𝑛(𝑛 + 1)
𝜁𝑛
(0.0)

(𝜌𝑛
(0,0))

2  

(2.117) 

where the ellipses indicate lower order terms which are zero due to orthogonality. This form of 

the relationship shows that V is clearly symmetric and therefore WB is symmetric for i = 1,..,n, j 

= 1,..,n. 

To complete the proof we must also show the boundary or border elements are symmetric:  

 𝑊𝑖𝐵𝑖,𝑛+1 = −𝐴𝑛+1,𝑖    and 

𝑊𝑖𝐵𝑖,0 = 𝐴0,𝑖 
(2.118) 

Only the first case is considered, since the two are equivalent due to the symmetry of the 

points about the centerline. Expressions for the reduced polynomials are given above. The 

derivative of the reduced polynomial and the value and derivative of the endpoint interpolating 

polynomial are: 

 𝑑ℓ𝑖
∗

𝑑𝑥
=

(𝑥 − 𝑥𝑖)𝑃𝑛
′ − 𝑃𝑛

(𝑥 − 𝑥𝑖)2 𝑃𝑛
′(𝑥𝑖)

 

ℓ𝑛+1 =
1

2
(1 + 𝑥)𝑃𝑛(𝑥) 

𝑑ℓ𝑛+1

𝑑𝑥
=

1

2
[(1 + 𝑥)𝑃𝑛

′ + 𝑃𝑛] 
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Eq. (2.113) is used with j = n + 1 and is integrated by parts twice. Substitution into the integral 

term results in: 

 
𝑊𝑖𝐵𝑖,𝑛+1 = [ℓ𝑖

∗
𝑑ℓ𝑛+1

𝑑𝑥
− ℓ𝑛+1

𝑑ℓ𝑖
∗

𝑑𝑥
]
−1

+1

+ 
1

2
∫ (1 + 𝑥)𝑃𝑛(𝑥)

𝑑2ℓ𝑖
∗(𝑥)

𝑑𝑥2
𝑑𝑥

1

−1

 (2.119) 

The terms in the integrand multiplying the Legendre polynomial form a polynomial of degree n 

– 2, so the integral is zero due to orthogonality. Eqs.(2.11) and (2.27) are used to evaluate the 

remaining terms in the equation:  

 

𝑑ℓ𝑛+1(1)

𝑑𝑥
= 𝑃𝑛

′(1) +
1

2
𝑃𝑛(1) =

1

2
[𝑛(𝑛 + 1) + 1] 

𝑑ℓ𝑛+1(−1)

𝑑𝑥
=

1

2
𝑃𝑛(−1) =

1

2
(−1)𝑛 

ℓ𝑖
∗(1) =

1

(1 − 𝑥𝑖) 𝑃𝑛
′(𝑥𝑖)

 

ℓ𝑖
∗(−1) =

(−1)𝑛+1

(1 + 𝑥𝑖) 𝑃𝑛
′(𝑥𝑖)

 

𝑑ℓ𝑖
∗(1)

𝑑𝑥
=

(1 − 𝑥𝑖)𝑛(𝑛 + 1) − 2

2(1 − 𝑥𝑖)2 𝑃𝑛
′(𝑥𝑖)

 

The following result is obtained after substituting these values: 

 
𝑊𝑖𝐵𝑖,𝑛+1 = [

1

1 − 𝑥𝑖
+

1

1 + 𝑥𝑖
+

2

(1 − 𝑥𝑖)2
]

1

2𝑃𝑛
′(𝑥𝑖)

 

=
2

(1 − 𝑥𝑖)(1 − 𝑥𝑖
2) 𝑃𝑛

′(𝑥𝑖)
, while 

−𝐴𝑛+1.𝑖 =  
−𝑊𝑖

𝑏

(1 − 𝑥𝑖)𝑊𝑛+1
𝑏

 =
2

(1 − 𝑥𝑖)(1 − 𝑥𝑖
2) 𝑃𝑛

′ (𝑥𝑖)
 

(2.120) 

The last equation is the relationship for the first derivative matrix is from Eq. (2.103), which is 

evaluated with Eq. (2.71). This completes the proof.  

It is clear from this exercise that the first relationship for the stiffness matrix in Eq. (2.111) does 

not generally produce a symmetric stiffness matrix. The case with Gauss points is unique and 

the resulting symmetry is dependent on the orthogonality of the Legendre polynomials. For 

other choices of points, e.g. Chebyshev or equally spaced points, the stiffness matrix is not 

symmetric. 

2.7 Nodal Mass Matrices 

The mass matrix is another useful matrix with a name from structural mechanics. Of course, 

for many applications it has nothing to do with mass. Its use is explained in sections 3.1.2 and 

3.1.3 which describe the method of moments and the Galerkin method. Here we are 

concerned with calculation of the mass matrix. The nodal mass matrix is: 
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 𝑀𝑖𝑗 = ∫ ℓ𝑖

∗
1

−1

(𝑥)ℓ𝑗(𝑥)𝑓(𝑥)𝑑𝑥 (2.121) 

where ℓ are the Lagrange interpolating polynomial trial functions defined by Eq. (2.1) and ℓ* 

are the weight functions. For the Galekin method the weight functions equal the trial functions 

and for the method of moments the weight functions are the reduced polynomials which 

interpolate through only the interior points, see Eqs. (2.113) and (3.16). Note that M is 

symmetric for the Galerkin method and nonsymmetric for moments.  

For collocation methods, the mass matrix is approximated by the diagonal matrix:  

  𝑀𝑖𝑗 ≈ 𝛿𝑖𝑗𝑊𝑖𝑓(𝑥𝑖) (2.122) 

For problems with symmetry and 𝑓(𝑥) = 1, the quadrature produces an exact result. For other 

problems, a more accurate M is a full matrix and Eq. (2.122) is approximate. For a general 

function, a more accurate result can be found by using a number of extra quadrature points. If 

the function is a polynomial the number of quadrature points needed for an exact result is 

easily determined given the known accuracy of the quadrature. 

2.7.1 Galerkin and Moments Mass Matrices 

If 𝑓(𝑥) = 1 and the problem is nonsymmetric, the associated quadrature (Gaussian for 

moments, Lobatto for Galerkin) is one degree shy of that needed for exact integration of Eq. 

(2.121). For this case, analytical expressions for the mass matrix are developed below.  

The interpolating polynomials can be represented in terms of monic Jacobi polynomials, see 

Eq. (2.1): 

 
ℓ𝑖(𝑥) =

(1 − 𝑥2)𝑝𝑛
(𝛼,𝛼)

(𝑥)

(1 − 𝑥𝑖
2)(𝑥 − 𝑥𝑖)𝑝𝑛

(𝛼,𝛼) ′
(𝑥𝑖)

 

ℓ𝑖
∗(𝑥) =

(1 − 𝑥2)𝛼𝑝𝑛
(𝛼,𝛼)

(𝑥)

(1 − 𝑥𝑖
2)

𝛼
(𝑥 − 𝑥𝑖)𝑝𝑛

(𝛼,𝛼) ′(𝑥𝑖)
 

(2.123) 

where α = 0,1 for moments and Galerkin methods, respectively and x are roots of the 

respective Jacobi polynomials. Define 𝑞𝑖(𝑥) = 𝑝𝑛
(𝛼,𝛼)

(𝑥) (𝑥 − 𝑥𝑖)⁄  and 

 
𝑈𝑖𝑗 = 𝑝𝑛

(𝛼,𝛼)′(𝑥𝑖) 𝑝𝑛
(𝛼,𝛼)′(𝑥𝑗)(1 − 𝑥𝑗

2)(1 − 𝑥𝑖
2)

𝛼
 𝑀𝑖𝑗 = ∫ 𝑞𝑖(𝑥)𝑞𝑗(𝑥)(1 − 𝑥2)𝛼+1𝑑𝑥

1

−1

 (2.124) 

First consider the case i ≠ j and for convenience omit the superscripts on pn:  
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𝑈𝑖𝑗 = ∫ 𝑝𝑛(𝑥)

[
 
 
 

∏(𝑥 − 𝑥𝑘)

𝑛

𝑘≠𝑖
𝑘≠𝑗 ]

 
 
 
(1 − 𝑥2)𝛼+1𝑑𝑥

1

−1

 

= − ∫ 𝑝𝑛(𝑥)(𝑝𝑛(𝑥) + ⋯)(1 − 𝑥2)𝛼𝑑𝑥

+1

−1

 

=
−𝜁𝑛

(𝛼,𝛼)

(𝜌𝑛
(𝛼,𝛼)

)
2 

(2.125) 

The product of (1 – x2) and the continued product above is an nth degree monic polynomial, so 

it can be represented as a series of orthogonal polynomials. The remaining term, (1 – x2)α, is 

the weight function for the respective Jacobi polynomials. The ellipses indicate the lower order 

terms which do not contribute due to orthogonality. The resulting expression for the mass 

matrix is: 

 
𝑀𝑖𝑗 =

−𝜁𝑛
(𝛼,𝛼)

𝑃𝑛
′(𝑥𝑖)𝑃𝑛

′(𝑥𝑗)(1 − 𝑥𝑗
2) (1 − 𝑥𝑖

2)
𝛼 = −𝜁𝑛

(𝛼,𝛼)(1 − 𝑥𝑖
2)

1−𝛼
𝑊̂𝑖

𝑏𝑊̂𝑗
𝑏     for 𝑖 ≠ 𝑗 (2.126) 

where 𝑾̂𝑏 are the normalized barycentric weights defined by Eq. (2.66). 

The diagonal terms are:  

 
𝑈𝑖𝑖 = ∫ [𝑞𝑖(𝑥)]2(1 − 𝑥2)𝛼+1𝑑𝑥

1

−1

 (2.127) 

First, integrate by parts using 𝑑(𝑥 − 𝑥𝑖) = 𝑑𝑥:  

 
𝑈𝑖𝑖 = (𝑥 − 𝑥𝑖)[𝑞𝑖(𝑥)]2(1 − 𝑥2)𝛼+1|−1

+1 + 2∫ [(𝑥2 − 1)𝑞𝑖
′ + (𝛼 + 1)𝑥𝑞𝑖]𝑝𝑛(𝑥)(1 − 𝑥2)𝛼𝑑𝑥

1

−1

 (2.128) 

The first term above is zero. q is a (n - 1)th degree monic polynomial, so its derivative is an (n-

2)th degree polynomial with a leading coefficient of n - 1, so the term in brackets can be 

represented by a polynomial series and the equation reduces to:  

 
𝑈𝑖𝑖 = 2∫ [(𝑛 + 𝛼)𝑝𝑛 + ⋯]𝑝𝑛(𝑥)(1 − 𝑥2)𝛼𝑑𝑥

1

−1

= 2(𝑛 + 𝛼)
𝜁𝑛

(𝛼,𝛼)

(𝜌𝑛
(𝛼,𝛼)

)
2 (2.129) 

Where the ellipses again represent lower order terms which are zero due to orthogonality. The 

diagonal terms of the mass matrix are: 

 
𝑀𝑖𝑖 =

2(𝑛 + 𝛼)𝜁𝑛
(𝛼,𝛼)

[𝑃𝑛
′(𝑥𝑖)]2(1 − 𝑥𝑖

2)
𝛼+1 = 2(𝑛 + 𝛼) 𝜁𝑛

(𝛼,𝛼)(1 − 𝑥𝑖
2)

1−𝛼
[𝑊̂𝑖

𝑏]
2
 (2.130) 

Evaluating ζ(α,α) with Eq. (2.7) for the specific cases, the mass matrix in terms of barycentric 

weights for the moments method is:  
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𝑀𝑖𝑗 = −

2

2𝑛 + 1
(1 − 𝑥𝑖

2)𝑊̂𝑖
𝑏𝑊̂𝑗

𝑏     for 𝑖 ≠ 𝑗 

𝑀𝑖𝑖 =
4𝑛

2𝑛 + 1
(1 − 𝑥𝑖

2)(𝑊̂𝑖
𝑏)

2
 

(2.131) 

For the Galerkin method it is: 

 
𝑀𝑖𝑗 = −

8(𝑛 + 1)

(2𝑛 + 3)(𝑛 + 2)
𝑊̂𝑖

𝑏𝑊̂𝑗
𝑏     for 𝑖 ≠ 𝑗 

𝑀𝑖𝑖 =
16(𝑛 + 1)2

(2𝑛 + 3)(𝑛 + 2)
(𝑊̂𝑖

𝑏)
2
 

(2.132) 

Due to the alternating signs of the barycentric weights, the off diagonal terms alternate in sign 

such that Mi,i+k is positive when k is odd and negative when k is even, so the diagonal and the 

two terms adjacent to the diagonal are positive.  

Since the barycentric weights and Gaussian quadrature weighs are related through Eq. (2.78), 

the coefficients for the method of moments are:  

 
𝑀𝑖𝑗 =

(−1)(𝑖+𝑗+1)

2𝑛 + 1
√

(1 − 𝑥𝑖
2)𝑊𝑖𝑊𝑗

(1 − 𝑥𝑗
2)

    for 𝑖 ≠ 𝑗, 𝑗 = 1,… , 𝑛 

𝑀𝑖𝑗 =
(−1)(𝑖+𝑗+1)

2𝑛 + 1
√

1

2
(1 − 𝑥𝑖

2)𝑊𝑖    for 𝑖 ≠ 𝑗, 𝑗 = 0, 𝑛 + 1 

𝑀𝑖𝑖 =
2𝑛

2𝑛 + 1
𝑊𝑖  𝛿𝑖𝑗 

(2.133) 

The barycentric weights cannot be expressed in terms of quadrature weights for the first and 

last columns. The value of the endpoint weights are ½ from Eq. (2.74), so these values are 

substituted to obtain the intermediate expression above. 

For the Galerkin method Eq. (2.81) relates the barycentric weights and Lobatto quadrature 

weights. Substituting these expressions gives the following expression for the mass matrix: 

 
𝑀𝑖𝑗 =

(−1)(𝑖+𝑗+1)

2𝑛 + 3
√𝑊𝑖𝑊𝑗    for 𝑖 ≠ 𝑗 

𝑀𝑖𝑖 =
2𝑛 + 2

2𝑛 + 3
𝑊𝑖 

(2.134) 

Note that for the diagonal terms in each case the coefficient of the quadrature weight is 

positive and less than unity, but approaches unity for large n, i.e. 0 < Mii ≲ Wi. The diagonal 

and adjacent terms are positive. The row sums of the mass matrices are Wi and the column 

sums are Wj. The ratio of the diagonal term relative to the sum of off-diagonal terms is greater 

than 2n, i.e. 𝑀𝑖𝑖 ∑ 𝑀𝑖𝑗 > 2𝑛𝑗≠𝑖⁄ . The matrix is strongly diagonally dominant and Eq. (2.122) is a 

good approximation to the mass matrix. 
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2.8 Interpolation Using Nodal Derivatives 

In some cases it is more convenient to use nodal trial functions which incorporate derivatives 

at the endpoints. We have already used them in the First Example, section 1.3. There we used 

Hermite cubic interpolation [Hildebrand (1987), p. 282]. These can be extended to higher order 

using both values and derivatives at several points. However, for our purposes we need 

interpolation using values and derivatives at the boundaries but interpolating with derivatives is 

usually not beneficial at interior nodes. We would prefer a formula of the form: 

 
𝑢̃ =  ∑ℎ𝑖(𝑥)𝑢̃(𝑥𝑖)

𝑛

𝑖=1

+ ℎ̅0(𝑥)𝑢̃′(0) + ℎ̅1(𝑥)𝑢̃′(1) (2.135) 

where x1 = 0 and xn = 1. The degree of the polynomials are n + 1. The functions obey the 

conditions: ℎ𝑖(𝑥𝑗) = 𝛿𝑖𝑗 , ℎ𝑖
′(1) = ℎ𝑖

′(0) = 0, and  ℎ̅𝑖(𝑥𝑗) = 0, ℎ̅0
′ (0) = ℎ̅1

′ (1) = 1, ℎ̅0
′ (1) = ℎ̅1

′ (0) =

0. The interior nodes are usually located at quadrature points to reduce the need for 

interpolating values. These functions can be represented by: 

 ℎ𝑖(𝑥) = 𝑟𝑖(𝑥)ℓ𝑖(𝑥);   ℎ̅𝑗(𝑥) = 𝑠𝑗(𝑥)𝑝(𝑥) (2.136) 

for i = 1,…,n and j = 0,1. Where 𝑝(𝑥) = ∏(𝑥 − 𝑥𝑗) and ℓi(x) are the Lagrange interpolating 

polynomials. The sj(x) are linear functions, while the ri(x) are quadratic. These functions are 

determined by applying the conditions above. The first derivatives are: 

 ℎ𝑖
′(𝑥) = 𝑟𝑖

′(𝑥)ℓ𝑖(𝑥) + 𝑟𝑖(𝑥)ℓ𝑖
′(𝑥) 

ℎ̅𝑗
′(𝑥) = 𝑠𝑗

′(𝑥)𝑝(𝑥) + 𝑠𝑗(𝑥)𝑝′(𝑥) 
(2.137) 

The conditions on r(x) are:  

 𝑟𝑖(𝑥𝑗) = 𝛿𝑖𝑗 

ℎ𝑖
′(0) = 𝑟𝑖

′(0)ℓ𝑖(0) + 𝑟𝑖(0)ℓ𝑖
′(0) = 0 

ℎ𝑖
′(1) = 𝑟𝑖

′(1)ℓ𝑖(1) + 𝑟𝑖(1)ℓ𝑖
′(1) = 0 

 

The following functions satisfy these conditions: 

 
𝑟𝑖(𝑥) =

𝑥(1 − 𝑥)

𝑥𝑖(1 − 𝑥𝑖)
   for 𝑖 = 2, … , 𝑛 − 1 

𝑟1(𝑥) = (1 − 𝑥)[1 + (1 − ℓ1
′ (0))𝑥] 

𝑟𝑛(𝑥) = 𝑥[1 + (1 − 𝑥)(1 + ℓ𝑛
′ (1))]  

 

The other conditions lead to: 

 𝑠0(𝑥) = (1 − 𝑥)/𝑝′(0) 

𝑠1(𝑥) = 𝑥/𝑝′(1) 
 

These functions give the following derivatives:  

 
𝑟𝑖

′(𝑥) =
1 − 2𝑥

𝑥𝑖(1 − 𝑥𝑖)
  for 𝑖 = 2, … , 𝑛 − 1 

𝑟1
′(𝑥) = −1 + (1 − 2𝑥)(1 − ℓ1

′ (0)) 

𝑟𝑛
′(𝑥) = 1 + (1 − 2𝑥)(1 + ℓ𝑛

′ (1)) 

𝑠0
′ (𝑥) =  −1/𝑝′(0) 

𝑠1
′(𝑥) =  1/𝑝′(1) 
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ℓ1
′ (0) and ℓ𝑛

′ (1) are elements of the differentiation matrix, section 2.5, while 

1 𝑝′(0)⁄ and 1 𝑝′(1)⁄  are barycentric weights, section  2.4.1. These relationships can be used 

to create a differentiation matrix in terms of the nodal values and endpoint derivatives. 

Second derivatives are given by: 

 ℎ𝑖
′′(𝑥) = 𝑟𝑖

′′(𝑥)ℓ𝑖(𝑥) + 2𝑟𝑖
′(𝑥)ℓ𝑖

′(𝑥) + 𝑟𝑖(𝑥)ℓ𝑖
′′(𝑥) 

ℎ̅𝑗
′′(𝑥) = 2𝑠𝑗

′(𝑥)𝑝′(𝑥) + 𝑠𝑗(𝑥)𝑝′′(𝑥) 
(2.138) 

A second derivative matrix is easily calculated from these relationships. 

2.9 Discrete Jacobi Transforms  

As stated in Chapter 1, there are simple relationships between the nodal, modal, and 

monomial representations. Modal and nodal approximations are given by Eqs. (1.2) and (2.1), 

respectively, while monomial representations are given in Eq. (1.20) and Eq. (2.152) in the 

next section. Apart from possible differences in machine roundoff, there is no difference in the 

computed solution when any of the three representations is used for the trial solution. Although 

this monograph uses a nodal representation, transforms with the other representations are 

described for completeness. Here we examine the relationship between nodal and modal 

representations, while below in Section 2.10 transforms between nodal and monomial 

representations are described. 

If one is given the modal coefficients, 𝒂, in Eq. (1.2), it is straight forward to compute the 

values of the polynomials at the nodes and then sum the series to determine the nodal values, 

u(xi). However, suppose the nodal values, u, are known and we wish to determine the modal 

coefficients which interpolate u(x). This problem is not as simple. One approach would be to 

treat the problem as a linear algebraic system to solve for the modal coefficients. The algebraic 

approach is particularly problematic with monomials, since the resulting Vandermonde matrix 

is notoriously ill conditioned. However, there is an easier way, which is the subject here. 

First, consider a discrete transform for a general Jacobi polynomial. It is analogous to a Fourier 

transform, so to express a function by a polynomial series of the type: 

 
𝑓(𝑥) = ∑ 𝑎𝑘𝑃𝑘

(𝛼,𝛽)

∞

𝑘=0

 (2.139) 

The coefficients are determined by: 

 
𝑎𝑘 =

1

𝜁𝑘

(𝛼,𝛽)
∫ 𝑓(𝑥)𝑃𝑘

(𝛼,𝛽)(𝑥)(1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑑𝑥
1

−1

 (2.140) 

where 𝜁𝑘
(𝛼,𝛽)

 are from Eq. (2.7). For Legendre polynomials 𝜁𝑘
(0,0)

= 2 (2𝑘 + 1)⁄ . 

Table 2.6 shows several examples of Jacobi transforms for 𝑓(𝑥) = 1 − 𝑥2(3 + 2𝑥2) 5⁄ . The 

examples include most of the polynomials considered in Table 2.1. The last four columns are 

associated with cylindrical and spherical geometry. For cylindrical problems, the 
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Legendre/Gauss and Radau polynomials are used, but are expanded in terms of x2 and are 

shifted to [0,1]. For spherical polynomials, shortcut type polynomials are used, but they are 

related to the full polynomials through Eq. (2.21). The coefficients in the table have been 

converted to corresponding full polynomials. The odd polynomials are made symmetric with 

the division by x. Some of these polynomials may seem strange, but they are the ones that 

give the highest accuracy quadratures for the various geometries, cf. Table 2.1. 

 We want to emphasis here, that we will not normally expand the solution in terms of these 

polynomials, but they are the ones associated with the Lagrange trial functions, i.e. those 

appearing in Eq. (2.4). These are also the polynomials that the residual is made orthogonal to 

in MWR as discussed in section 3.1.6. 

A Jacobi transform can be used for interpolation by inserting the interpolant for f(x). If an mth 

degree interpolating polynomial is used, then: 

 

 
𝑎𝑘 =

1

𝜁𝑘

(𝛼,𝛽)
∑ 𝑓(𝑥𝑖)∫ ℓ𝑖(𝑥)𝑃𝑘

(𝛼,𝛽)(𝑥)(1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑑𝑥
1

−1

𝑚

𝑖=0

 

≈
1

𝜁𝑘

(𝛼,𝛽)
∑𝑓(𝑥𝑖) 𝑊𝑖

∗𝑃𝑘
(𝛼,𝛽)(𝑥𝑖)

𝑚

𝑖=0

= ∑ 𝑄𝑘𝑖𝑓(𝑥𝑖)

𝑚

𝑖=0

 

(2.141) 

In the second equation, the interpolation is through quadrature points and quadrature is used 

to approximate the integrations. Use x and W*, base points and weights, for Jacobi-Gauss 

quadrature defined by Eqs. (2.8) and (2.64). The same formula can be uses for Jacobi-Gauss-

Radau and Jacobi-Gauss-Lobatto quadrature which are generalizations (i.e. including both 

endpoints and a weight within the integrand) of the formulas described in Sections 2.4.3 and 

2.4.4. The number of correct coefficients, a, depends on the quadrature accuracy. For m+1 

nonzero quadrature weights, the accuracy is degree 2m+1, 2m and 2m-1 for Gauss, Radau 

and Lobatto quadrature respectively. Since for k ≤ m, the integrand is up to degree 2m, the 

coefficients are exact provided a modification is used for the Lobatto case [Shen, et al. (2011)]: 

 
𝜁𝑘

(𝛼,𝛽)
=  {

 𝜁𝑚
(𝛼,𝛽) (2𝑚 + 𝛼 + 𝛽 + 1) 𝑚⁄    for 𝑘 = 𝑚 Lobatto 

 𝜁𝑘
(𝛼,𝛽)

                                              otherwise
 (2.142) 

Table 2.6 Jacobi Transform Coefficients, 𝒇(𝒙) = 𝟏 − 𝒙𝟐(𝟑 + 𝟐𝒙𝟐) 𝟓⁄  

n 𝑃𝑛

(−1
  2

,−1
  2

)
 𝑃𝑛

(0,0)
 𝑃𝑛

(1
2
,1
2
)
 𝑃𝑛

(1,1)
 𝑃𝑛

(1,0)
 𝑃𝑛

(0,1)
 𝑃𝑛

(0,0)(𝑥2)† 𝑃𝑛
(1,0)

 (𝑥2)† 𝑃𝑛
(0,0)

/𝑥 𝑃𝑛
(1,1)

/𝑥 

0 0.55000 0.72000 0.80000 0.84571 0.72000 0.72000 0.56667 0.73333 0 0 

1 0 0 0 0 0.25143 -0.25143 -0.50000 -0.30667 0.46857 0.32381 

2 -1.33333 -0.62857 -0.36000 -0.23111 -0.37714 -0.37714 -0.06667 -0.04000 0 0 

3 0 0 0 0 0.04063 -0.04063 0 0 -0.41778 -0.13766 

4 -0.18286 -0.09143 -0.05079 -0.03048 -0.05079 -0.05079 0 0 0 0 

5 0 0 0 0 0 0 0 0 -0.05079 -0.01616 
               † shifted polynomials 
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A nodal basis with MWR interpolates through the interior and endpoints, even for Gauss points 

for which endpoint quadrature weights are zero. Lobatto quadrature utilizes the endpoints, so 

the equation is exactly what is needed to produce Legendre coefficients from values at Lobatto 

points, where m = n + 1 and α = β = 0. The transformation matrix is: 

 
𝑄𝑘𝑖 =

𝑊𝑖

𝜁𝑘
(0,0)

𝑃𝑘
(0,0)(𝑥𝑖) (2.143) 

Where W and x are the Lobatto quadrature weights and base points from Eq. (2.81).  

For Gauss points Eq. (2.141) does not include the endpoints because the endpoint weights are 

zero. With MWR and collocation, both endpoints are always included in the interpolant. Many 

texts [e.g. Canuto, et al. (1988), Boyd (2000)] discuss the use of Eq. (2.143), but they fail to 

consider the endpoints, which are required to meet the boundary conditions. Using the 

endpoints and n interior points, Eq. (2.141) requires integration through degree 2n + 2, 

whereas Gaussian quadrature is exact only through 2n – 1, so the approach cannot be made 

to work unless more accurate integration is used. 

If the problem has homogenous Dirichlet boundary conditions it is possible to expand the 

solution in Jacobi polynomials which can then be converted to a Legendre series using Eq. 

(2.42) as follows:  

 
𝑓(𝑥) = (1 − 𝑥2) ∑ 𝑏𝑘𝑃𝑘

(1,1)(𝑥)

𝑛−1

𝑘=0

= ∑ 𝑏̂𝑘

𝑛−1

𝑘=0

(𝑃𝑘(𝑥) − 𝑃𝑘+2(𝑥)) (2.144) 

where 𝑏̂𝑘 = 𝑏𝑘 2(𝑘 + 1) (2𝑘 + 3)⁄  and the coefficients are: 

 
𝑏𝑘 = 

1

𝜁𝑘
(1,1)

∑𝑓(𝑥𝑖)∫ ℓ𝑖(𝑥)𝑃𝑘
(1,1)

(𝑥)𝑑𝑥
1

−1

𝑛

𝑖=1

= ∑𝑄𝑘𝑖
𝐽
𝑓(𝑥𝑖)

𝑛

𝑖=1

 (2.145) 

and from Eq.(2.7), 𝜁𝑘
(1,1)

= 8(𝑘 + 1)/[(2𝑘 + 3)(𝑘 + 2)]. The Jacobi transform for α  = β = 1 

requires the integrand to contain the weight function, (1 – x 2). Eq. (2.145) appears to violate 

this requirement, but in fact the term is contained within the interpolating polynomial. 

If we use the quadrature associated with the points selected, Q J is given by: 

 
𝑄𝑘𝑖

𝐽 =
𝑊𝑖

𝜁𝑘
(1,1)

𝑃𝑘
(1,1)(𝑥𝑖) (2.146) 

k = 0,…,n - 1 and i = 1,…,n. With this approach, the integrand in Eq. (2.145) is two degrees 

less than the one in Eq. (2.141), a total of up to 2n degrees. Lobatto quadrature is exact, while 

Gaussian quadrature misses exact integration by one degree. However, an exact result is 

obtained by using the following for Gauss points:  
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𝜁𝑘
(1,1)

= {
 𝜁𝑘

(1,1)
                     for 𝑘 < 𝑛 − 1

 𝜁𝑘
(1,1)

(
2𝑘 + 3

𝑘 + 2
)      for 𝑘 = 𝑛 − 1

 (2.147) 

The modification above is not needed for Lobatto points, since they produce an exact result.  

For convenience, let fi = f(xi). The development using Eqs. (2.144) and (2.145)  assumes 

homogenous boundary values, 𝑓0 = 𝑓𝑛+1 = 0; however, it is easy to generalize to arbitrary 

endpoint values by using an expansion of the form: 

 
𝑓(𝑥) =

(1 − 𝑥)

2
𝑓0 +

(1 + 𝑥)

2
𝑓𝑛+1 + (1 − 𝑥2) ∑ 𝑏𝑘𝑃𝑘

(1,1)(𝑥)

𝑛−1

𝑘=0

 

= (𝑓0 + 𝑓𝑛+1)
𝑃0

2
− (𝑓0 − 𝑓𝑛+1)

𝑃1

2
+ ∑ 𝑐𝑘(𝑃𝑘(𝑥) − 𝑃𝑘+2(𝑥))

𝑛−1

𝑘=0

 

(2.148) 

The values of the coefficients, b, are determined using Eq. (2.145), with 𝑓(𝑥𝑖) − (1 − 𝑥𝑖)𝑓0 2⁄ −

(1 + 𝑥𝑖)𝑓𝑛+1/2 substituted for 𝑦(𝑥𝑖). Next, define an intermediate transform matrix for the 

coefficients c: 

 
𝑄̃𝑘,0 = −(

𝑘 + 1

2𝑘 + 3
)∑𝑄𝑘𝑖

𝐽

𝑛

𝑖=1

(1 − 𝑥𝑖) 

𝑄̃𝑘𝑗 = 2(
𝑘 + 1

2𝑘 + 3
)𝑄𝑘𝑗

𝐽  

𝑄̃𝑘,𝑛+1 = −(
𝑘 + 1

2𝑘 + 3
)∑𝑄𝑘𝑖

𝐽

𝑛

𝑖=1

(1 + 𝑥𝑖) 

(2.149) 

for k = 0,…,n - 1 with 𝑄̃𝑘𝑗 = 0 for 𝑘 = −2, −1, 𝑛, 𝑛 + 1. The intermediate transform in Eq. 

(2.149) can be used to calculate the coefficients of Eq. (2.148) by summing over the boundary 

and interior points: 

 
𝑐𝑘 =  ∑ 𝑄̃𝑘𝑖𝑓(𝑥𝑖)

𝑛+1

𝑖=0

 (2.150) 

The Legendre transformation matrix in Eq. (2.141) can then be completed by collecting like 

terms: 

 𝑄𝑘𝑗 =  𝑄̃𝑘−2,𝑗 − 𝑄̃𝑘𝑗 +
1

2
(𝛿𝑘,0 − 𝛿𝑘,1)𝛿𝑗,0 +

1

2
(𝛿𝑘,0 + 𝛿𝑘,1)𝛿𝑗,𝑛+1 (2.151) 

for k = 0,…,n + 1. The transform matrix defined by Eq. (2.151) is identical to that defined by 

the Legendre transform in Eqs. (2.141) and (2.143). 

In summary, the Legendre transform matrix, Q, can be calculated quite simply for either Gauss 

or Lobatto interior points and the boundary points. A simple matrix multiply, Eq. (2.141), gives 

the coefficients of the truncated Legendre series, Eq. (1.2), which interpolates the nodal 

values. Transforming in the other direction is easier, since given the modal coefficients, the 
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nodal values are calculated by summing the coefficients times the polynomials evaluated at 

the nodes, i.e. evaluation of Eq. (1.2) at the nodes. 

As explained by Boyd (2000), the transform matrix, Q, can be substituted into any of the 

approximations to convert from one form to the other, i.e. modal to nodal or vice versa. For 

example, suppose a matrix B acts on modal coefficients. It can be converted to one for nodal 

values by: 𝑩𝒂̂ = 𝑩𝑸𝒚. As an example we convert the modal differentiation matrix given by Eq. 

(2.44) to a nodal matrix as follows: 

 
∑  

𝑑𝑃𝑘(𝑥)

𝑑𝑥
|
𝑥𝑖

𝑄𝑘𝑗

𝑛+1

𝑘=0

= 𝐴𝑖𝑗 =
𝑑ℓ𝑗(𝑥)

𝑑𝑥
|
𝑥𝑖

  

where A is the first derivative matrix given by Eq. (2.103). As an example, consider Gauss 

points with n = 2. Eq. (2.44) is evaluated at the endpoints ±1 and the two interior points ±√1 3⁄   

for the first four polynomials. Post multiplication by the transformation matrix gives: 

 
[

 0 1 −3.00000 6 
 0 1 −1.73205 1 
 0 1 1.73205 1 
 0 1 3.00000 6 

] [

 0.00 0.50000 0.50000 0.00 
 −0.20 −0.51962 0.51962 0.20 

 0.50 −0.50000 −0.50000 0.50 
 −0.30 0.51962 −0.51962 0.30 

] = [

 −3.50000 4.09808 −1.09808 0.50000 
 −1.36603 0.86603 0.86603 −0.36603 

 0.36603 −0.86603 −0.86603 1.36603 
 −0.50000 1.09808 −4.09808 3.50000 

]  

After multiplying by 2 to rescale from [-1,1] to [0,1], the values for A are identical to those from 

Eq. (2.103) which is implemented in supplied code. This example is also listed in Finlayson 

(1972), Table 5.5. Some additional conversions of this type are illustrated in the examples. 

Some algorithms [Canuto, et al. (1988) p. 86, Boyd (2000), p. 107] require switching back and 

forth between the modal and nodal representations while solving some nonlinear problems. In 

such cases, the efficiency of the transformation can become important. In most cases the 

transformation matrix has special form which can be exploited to speed up the calculation. For 

Chebyshev trial functions, the transformation can be performed using fast Fourier transforms, 

which is the most efficient method for very large n, i.e. n > 20 – 100. Our preference is to use 

a nodal formulation which is much simpler for nonlinear problems and if large n is required 

then switch to a nodal finite element based method. If a problem truly benefits from use of a 

high order method, one could always use say 6 interior nodes per element to achieve an 8th 

order convergence rate! 

Many texts suggest or at least imply the form of the trial functions has a major effect on the 

results, the example calculations illustrate that, with regard to the calculated solution, it makes 

absolutely no difference whether the approximation is nodal, modal or monomials. The results 

are always equivalent and can easily be converted from one form to another. Rounding errors 

are the only potential source of differences. 

2.10 Monomial Transforms    

Early developments of orthogonal collocation did not calculate the nodal differentiation 

matrices as described in Section 2.5. In the early descriptions [Villadsen (1970), Finlayson 
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(1972)], orthogonal polynomials were stated to be the trial functions. Despite these statements 

to the contrary, the approximations were developed using monomial trial functions: 

 
𝑦(𝑥) ≈ ∑ 𝑎̌𝑘𝑥𝑘

𝑛+1

𝑘=0

 (2.152) 

The monomials were differentiated to develop expressions for derivatives and a transformation 

matrix converted the results to nodal approximations. For example, the first derivative matrix 

was calculated with an expression like:   

 𝑑𝑦

𝑑𝑥
|
𝑥𝑖

≈ ∑ 𝑘 𝑥𝑖
𝑘−1  𝑎̌𝑘

𝑛+1

𝑘=0

= ∑ (∑ 𝑘 𝑥𝑖
𝑘−1𝑄̌𝑗𝑘

𝑛+1

𝑘=0

)𝑦(𝑥𝑗)

𝑛+1

𝑗=0

= ∑𝐴𝑖𝑗

𝑛

𝑗=0

𝑦(𝑥𝑗) (2.153) 

The other differentiation matrices and the quadrature points were calculated with a similar 

procedure, i.e. by differentiating or integrating the monomials followed by transformation. 

Following Hamming (1962), the transformation matrix, 𝑸̌, was calculated by inverting the 

Vandermonde matrix, which is notoriously ill conditioned, so the approach is only valid for n ≲ 

10. We will develop a more direct procedure for calculating the transformation matrix, but one 

which is still subject to rounding errors for large n.  

The previous section discussed the transformation between nodal and modal representations 

of the solution. Here we consider the analogous transformation between nodal and monomial 

representations. Although this monograph uses nodal approximations, the transforms to other 

formulations are described for completeness. If the coefficients of Eq. (2.152) are known, it is 

easy to determine the nodal values by direct substitution. It is more difficult to determine the 

coefficients from the nodal values. We need a transformation analogous to Eq. (2.141): 

 
𝑎̌ℓ = ∑ 𝑄̌𝑘ℓ𝑦(𝑥𝑘)

𝑛+1

𝑘=0

 (2.154) 

The coefficients are those that interpolate through the nodal values, so what is needed is an 

expansion of the interpolating polynomial in Eqs. (2.1). Combining Eqs. (2.1) and (2.154) gives 

the following relationship:   

 
ℓ𝑖(𝑥) = ∏

(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛+1

𝑗=0
𝑗≠𝑖

= ∑ 𝑄̌𝑖𝑘𝑥𝑘

𝑛+1

𝑘=0

 (2.155) 

The values of 𝑸̌ can be calculated by expanding the continued product. The denominator is a 

simple calculation. The expansion of a continued product can be accomplished as follows: 
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∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=0

= (𝑥 − 𝑥0)∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=1

= [𝑥2 + (−𝑥0 − 𝑥1)𝑥 + 𝑥0𝑥1]∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=2

 

= (𝑥𝑘 + ∑ 𝑏𝑗𝑘𝑥𝑗

𝑘−1

𝑗=0

)∏(𝑥 − 𝑥𝑖)

𝑛+1

𝑖=𝑘

 

(2.156) 

The polynomial in the large parenthesis is built up recursively. The equalities on the top row 

shows values for k = 1 and 2. When k is incremented, the coefficients are updated by 𝑏𝑖,𝑘+1 =

𝑏𝑖−1,𝑘 + (−𝑥𝑘)𝑏𝑖𝑘 with 𝑏𝑘𝑘 = 1.  

Perhaps it is easier to understand the procedure by examining some Matlab code. Referring to 

the text box, x are the points and n is the total number of points. The first set of statements 

creates an (n)x(n-1) array, xj, which excludes the point corresponding to the row number and 

calculates the continued product for the denominator of Eq. (2.155). The second set of nested 

loops recursively calculates the values for each coefficient by expanding the continued product 

in the numerator. 

We demonstrate the transform by using Eq. (2.153) to calculate the same first derivative matrix 

considered in the previous section, i.e. for 2 interior Gauss points. The first matrix holds the 

values of the derivatives 𝑗 𝑥𝑖
𝑗−1

 at the two endpoints and two interior points (1 ± √1 3⁄ )/2. The 

second matrix is the transpose of 𝑸̌, and the result on the right-hand-side is the first derivative 

matrix, A. The values agree with those in the furnished software and are twice those in the 

previous section, since those are on the interval [-1,1] and these are on [0,1]. 

 

[

0 1 0.0000 0.000
0 1 0.4226 0.134
0 1 1.5774 1.866
0 1 2.0000 3.000

] [

10      0.000      0.000 0
−7      8.196   −2.196 1
12 −18.588    12.588 −6
−6     10.392 −10.392 6

] = [

−7.000    8.196 −2.196 1.000
−2.732    1.732    1.732 −0.732
   0.732 −1.732 −1.732 2.732
−1.000    2.196 −8.196 7.000

] 
 

 

 

Monomial Transform Calculation 

   xj = repmat(x(2:end)',n); 

   for i=1:n 

      xj(i,1:i-1) = x(1:i-1)'; 

      q(i,1) = ((1.0)./prod(x(i)-xj(i,:))); 

   end 

   for k=2:n 

      q(:,k) = q(:,k-1); 

      for kk=k-1:-1:2 

         q(:,kk) = q(:,kk-1) .- xj(:,k-1).*q(:,kk); 

      end 

      q(:,1) = -xj(:,k-1).*q(:,1); 

   end 
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2.11 Software 

Stroud and Secrest (1966) have tabulated the roots and quadrature weights to high accuracy 

for numerous cases through large n. Rather than using tabular values from a book, it is more 

convenient to have a computer code which will produce the desired quantities when requested. 

The computer code could store the results internally, calculate the roots and all of the 

coefficients, or some combination of the two approaches.  

There is some debate in the literature regarding the efficiency of fundamental calculations, 

especially from Chebyshev proponents. “Back in the day”, we calculated the quantities of 

interest and punched the results out on cards, which were read by our application codes. 

Some codes based on asymptotic methods, use a modernized version of this approach, i.e. 

values for small n are stored within the code rather than calculated. Fig. 2.22 shows the 

calculation of roots and weights normally requires less than a millisecond, and the other 

calculations are trivial. It doesn’t make sense to store coefficients in order to save computation 

time. Normally, the fundamental calculations make up a small portion of the total calculations 

required to solve a problem.  

Our aim is to provide code for the fundamental calculations of this chapter in all of the target 

computing environments: Python, Matlab/Octave, Excel, Fortran and C++. The calculations of 

interest are: 

1. Base points or roots, x 

2. Quadrature and barycentric weights, W and Wb 

3. Lagrange interpolating polynomials, ℓ(x) 

4. First derivative operators, A and 𝑨̂  

5. Laplacian operator, B 

6. Stiffness matrix, C  

7. Mass matrix for Galerkin or moments methods, M 

8. Jacobi and Legendre transforms, Q 

9. Monomial transform, 𝑸̌ 

10.  Orthogonal polynomials calculations 𝑃𝑛
(𝛼,𝛽)

 

11.  Polynomial differentiation, Eqs. (2.32), (2.35) and (2.38)   

 

The codes were used to create the results described in preceding sections, while more 

examples are presented in the next one. As of this writing, the Fortran code is the most 

complete, accurate and efficient. It can calculate all the quantities above for Gauss, Lobatto, 

Radau and Chebyshev points. Even equal spaced or some other supplied roots can be used 

for experimentation. The calculations can be performed for both nonsymmetric problems and 

symmetric ones in planar, cylindrical and spherical geometry. We plan to make the same 

calculations available in the other languages. However, only recurrence calculations will be 

implemented directly. For large problems, the codes will link to the Fortran modules. The 

online documentation should be checked to determine the status for each language.  
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The current Fortran code relies on three modules in three files, OrthPoly.f90, OrthCheb.f90 

and, OCC.f90. The points and weights and other fundamental calculations are carried out by 

OrthPoly and OrthCheb, while the OCC code calculates most of the other quantities, 

differentiation matrices etc. A similar approach is taken with the other languages. To solve 

problems, one will normally interface with the OCC code. The OrthPoly code is available for 

more fundamental calculations, e.g. Jacobi Transforms of sections 2.9. The Jacobi roots and 

the weights are determined using the noniterative high order methods described in Sections 

2.3 and 2.4. For small problems, n < 40, recurrence calculations are used, while asymptotic 

calculations are incorporated for larger n. The code has been tested for up to 106 points. The 

accurate and efficient methods used are not available in software from elsewhere, except 

perhaps for limited cases.  

The code is written in an objected oriented style. To use it you first initialize or instantiate a 

collocation object by specifying the value of n, the type of points and the geometry.  Once 

initialized the quantities desired are requested using array valued functions. The boxes below 

give examples for Python and Fortran. They are remarkably similar. The first lines indicate the 

modules to use. The “only” option is not mandatory for Fortran, but it is a good practice to 

explicitly state which functions you want to use. Both languages support renaming or aliasing 

of function names. Explicit importation is also possible with Python (second line), but it is not 

necessary because the obj.function syntax makes the source of the function more obvious. 

After initialization, the two examples get the points, quadrature weights, and first derivative, 

stiffness and mass matrices. Of course, with Fortran there are additional statements declaring 

the array dimensions. For each language there are test codes provided which illustrates use of 

the most common features.  

The various codes provide a toolkit for solving problems with not only collocation but also other 

MWR in a wide range of languages and calculation systems. Some of the examples 

demonstrate use of these codes with Galerkin and moments methods. A spreadsheet is not an 

ideal platform for solving differential equations, but it is useful for checking the calculations for 

correctness, comparing results, etc. The example codes create tab delimited text files for easy 

spreadsheet importation. 

Every effort was made to demonstrate good programming style for the code in this project. 

However, I will admit to occasionally 

doing what is expedient rather than 

Python Example  

import occ 

from occ import OrthColloc 

oc = OrthColloc(n,ptyp,geom) 

x = oc.Xpoints() 

w = oc.WeightQ() 

A = oc.Deriv1() 

C = oc.Stiffness() 

D = oc.MassMatrix() 

Fortran Example  

Use OrthogonalColloc, Only :  & 

  ColDataType, Initialize, Xpoints, & 

  WeightQ, Deriv1, Stiffness, MassMatrix 

Type(ColDataType) :: OC 

call Initialize(OC,n,typ,geom) 

x = Xpoints(OC) 

w = WeightQ(OC) 

A = Deriv1(OC) 

C = Stiffness(OC) 

D = MassMatrix(OC) 
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what is correct. My preferences are influenced by my experiences and do not always agree 

with others. Also, since I have coded in several languages, my coding style tends to be a 

composite, the Python code may not look “pythonic” and the C++ code may look something 

like Fortran. I prefer code which is concise, compact, and without a lot of extraneous white 

space. I see nothing wrong with multiple short statements on the same line. Matlab 

programmers tend to like a compact style, whereas some Fortran programmers like lots of 

white space. The variable names used in calculations tend to be short, so the code looks more 

like the equations in this monograph. Longer names are fine for procedures and flow control 

variables, etc. Unlike most Fortran programmers, I like to use functions, often array valued, 

rather than subroutines (in Fortran) or void functions (in C++). This seems to be the trend. 

Unfortunately, only one return is possible with Fortran and C++.  

I see nothing wrong with small include files, although the feature is absent or obscure in some 

languages and frowned upon in others. Where would C++ be without include files? Modules 

are usually recommended for Fortran, and they are used extensively for calculations. The 

modules use the object-oriented programming concept of encapsulation, data and functions 

are packaged together. They are usually private by default with public access only for specified 

items. However, Fortran modules are compiled, which is an unnecessary complication when a 

small include file suffices. Anyone who has worked much with Fortran modules has accidently 

created a project with a circular reference, which goes unnoticed until a complete rebuild is 

attempted. 

I try to avoid a lot of if statements.  Often functions can be used instead, e.g. a = max(0,a) is 

preferable to if(a < 0)a = 0. When applicable, I prefer case constructs to long if-elseif-else 

constructs. Indexing can often be used instead of if constructs, e.g. if you need a different 

“value” depending on a “method”, you might have something like value = value_list(method), 

where “value_list” is a parameter list.2 See the code in section 2.3.1  for an example. 

Array syntax is preferred rather than loops, especially for interpreted languages. Loops can be 

faster for compiles languages, but the code is larger. When a loop is required, I tend to use 

only one type of looping construct. Some upper limit on the loop count is usually needed to 

avoid an infinite loop. The ideal basic loop type is do forever, which can be modified by an 

index and count and/or break and continue options, which can be conditional. If that basic 

looping construct is available, why are while and until loops needed? Everyone has a finite 

memory for recalling the syntax of different constructs. 

For languages which support different levels of precision, I have tried to make precision 

changes easy. For example, with Fortran a single value of float is used to define the precision 

(called the kind in Fortran). This parameter is in an include file (see include file discussion 

above). This feature made it easy to compare the accuracy of different calculations, such as 

those in Figs. 2.11, 2.12,  2.21 and those in Appendix A.1. I shudder when I see code with 

hardwired “kind = 8” throughout, making precision changes a daunting and error prone task. 

 
2 I once hired a computer science student to help with our coding. He created an if-elseif-else construct that went 
for several hundred of lines. With indexing the same result was achieved with about ten lines of code.  
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Also, the “8” is implementation dependent and does not necessarily mean 8 bytes. I also like 

the name float or maybe flt rather than sp or dp. dp looks like it stands for double precision, 

which would be confusing if you redefine it to convert the program to single or quad precision. 

float is generic and could be single, double or quad precision, depending on how it is defined. 

It should be defined something like float = selected_real_kind(14), which specifies at least 14 

digits of accuracy if it is available.  

The example calculations require additional software to implement solutions, e.g. solution of 

linear algebraic equations, eigenvalues, etc. Some languages like Python and Matlab have 

code for these tasks which is more or less built in. They have used wrappers around tried and 

true public domain software like LAPack. For C++ and Fortran external libraries must be used, 

but they are easily accessed. For Fortran there is LAPack and for C++ there is CLAPack and 

the GNU Scientific Library, GSL. However, the interface to LAPack routines is ugly, requiring 

numerous arguments including workspace, etc. I have built wrappers to simplify and 

modernize these tasks, so a system of equations is solved by y = LUSolve(A,b). The technique 

of encapsulation by using a wrapper in a Fortran module or C++ class is a method everyone 

should know. There is no reason to recode a task when proven code is readily available in the 

public domain.  

Nowadays it is relatively easy to mix languages using interlanguage calling, common libraries, 

and conversion utilities like f2c, f2f90, f2matlab and f2py. For Python, f2py is recommended by 

many, but I prefer the simplicity of ctypes. With these tools one can incorporate tried and true 

public domain code using many different languages, or you can design a program using 

multiple languages. Fortran is good for doing calculations efficiently, C++ or Python is better 

for user interfaces and higher-level administrative tasks. One can use dynamic link library for 

Excel and Mex files for Matlab. For calculations with large n, I have used a dynamic link library 

for Python and C++.  

Encapsulation is one of the most important concepts in object-oriented programming. Although 

the example problems are small, the use of protection for data and internal calculations is 

demonstrated. The codes also show how to make distinct interfaces between program 

components for more reliable programs. 

2.12 Example Calculations 

For each of the language systems implemented one or more simple test programs are 

provided to demonstrate the call syntax and use of code to calculate the quantities described 

in this chapter. The code and a simple reference manual can be freely downloaded. 
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This section contains excerpts from the test codes and their results. The example shows some 

of the basic calculations and demonstrate their use for interpolation, differentiation and 

integration. For a more detailed understanding, one should experiment with the test codes. 

The example code below is in Matlab/Octave. Compact code like this can be produced by 

Python and Fortran also.  For C++ loops are required to produce the same results, so many 

more statements are needed. The C++ code and test spreadsheet perform these same 

calculations. 

In the Matlab/Octave code, the first line defines the size and type of problem and retrieves the 

points, quadrature weights, and the first derivative matrices for symmetric and antisymmetric 

quantities - x, w, A, An. The second statement produces the Laplacian and stiffness matrices, B 

and C. Two versions of the MassMatrix function are demonstrated, one assumes no function in 

Eq. (2.121), while the other gives the name of the function to use. An array of values, xi = (0, 

0.05, 0.10….), has been set up for tabulation and plotting values. The Lcoef function calculates 

values of the interpolating polynomials, while Lpoly calculates the monomial coefficients of the 

interpolating polynomials, Eq. (2.155). The routine ExpFunc calculates the values, derivative 

and integral of exp(-5x2) at the collocation 

points and xi. The last three statements 

interpolate the function and approximate its 

first derivative at the collocation points, and 

then calculates an approximate integral 

using the quadrature formula. All of these 

calculations are with native Matlab code. 

The code above is for a symmetric 

problem, and some plots are shown with 

cylindrical and spherical geometry. First, 

Lagrange interpolating polynomials, Li, are 

shown for four cylindrical Gauss points in 

Matlab Example Code 

[x,w,A,An] = OCsym(n,meth,geom); 

[B,C] = OCBCcoef(w,A,An,symm); 

D = MassMatrix(x); 

Df = MassMatrix(x,@MassFunc,2); 

Li = Lcoef(xi',x); 

Q = Lpoly(x,symm); 

for i=1:nt 

   Lp(:,i) = polyval(fliplr(Q(i,:)),xi); 

end 

[fx,fc,dfc] = Expfunc(x,symm,geom); 

[fx,f,df] = Expfunc(xi,symm,geom); 

fi = Li*fc; 

dfa = A*fc; 

fw = w'*fc; 
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Fig. 2.29 Lagrange polynomials, cylindrical geometry, n = 4
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Fig. 2.29. Then the approximation of the exponential function is in f and fi, and its first 

derivative are, df and dfa, are shown for cylindrical Gauss points in Figs. 2.30 and 2.31.  The 

quadrature weights, w, are shown in Figs. 2.32 and 2.33 for four points in cylindrical and 

spherical geometry, respectively. The error in the integrals from 0 to 1 of exp(-5x2)x and exp(-

5x2)x2 are shown in Figs. 2.34 and 2.35, i.e. (fx-fw)/fx for cylindrical and spherical geometry. 

When examining the Figs. 2.32 and 2.33, note that Chebyshev points are not shifted toward x 

= 1 as they are for the other points (due to β in the polynomial weight, see Eq. (2.7) and Table 

2.1). The Chebyshev points are not optimal for integration, which is apparent in Figs. 2.34 and 

2.35. The approximate integral converges with (n)log(n), so for large n all give exponential 

convergence. However, the convergence rate is slower for Chebyshev points by about a factor 

of 2. Chebyshev points are optimal for interpolation, while Gauss and Lobatto points are 

optimal for integration. 

For a more challenging interpolation problem, consider the Runge function:  

 
𝑓(𝑥) =

1

1 + 25𝑥2
 (2.157) 

Fig. 2.36 shows the results for interpolation with equally spaced points, while Fig. 2.37 shows 

results for interpolation at Gauss points. Since the problem is symmetric, only the right half is 
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displayed. Fig. 2.36 shows the classic divergence difficulties first considered by Runge (1901). 

A greater number of points leads to larger excursions near the endpoints. Chebyshev points 

are normally the best for interpolation; however, the goal here is not interpolation, but the 

approximation of differential equations. Nevertheless, any of the Jacobi polynomials converge 

uniformly as shown in Fig. 2.37. Also, divergence like that shown in Fig. 2.36 also occurs with 

equally spaced collocation, which is nicely illustrated in the review article by Bert and Malik 

(1996).
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3. Boundary Value Problems 
In this chapter boundary value problems are treated with Methods of Weighted Residuals 

(MWR). The problems are solved with Galerkin, moments and collocation methods. 

Examination of the Galerkin method and method of moments shows the best ways to 

formulate the collocation method, i.e. orthogonal collocation (OC), pseudospectral (PS) and 

differential quadrature (DQ) methods. With a proper formulation, collocation methods produce 

results almost as good as the Galerkin method and method of moments, but with less 

complexity, achieving the best of both worlds. The methods are developed around the 

examples rather than an abstract problem. Each section considers an example problem: 3.1 a 

diffusion or conduction problem with source (Helmholtz equation) and 3.2 a coupled convective 

heat and mass transfer problem, a nonisothermal chemical reactor with cooling and axial 

dispersion. 

3.1 Diffusion/Conduction with Source 

Consider reaction and diffusion in a porous slab, also called the catalyst particle problem or 

catalyst pellet problem. This differential equation is one of the most ubiquitous ones in 

engineering and physics. It is the Helmholtz equation in one dimension and is analogous to 

heat conduction in a slab with a heat source which is dependent on temperature and position. 

If the source, r, is constant, the equations describe laminar flow between parallel plates. It also 

describes the position of an elastic string, where r characterizes the load. The governing 

equations are:  

 𝑑2𝑦

𝑑𝑥2
+ 𝑟(𝑥, 𝑦) = 0 (3.1) 

where 𝑟(𝑥, 𝑦) = 4𝜑2𝑟̂(𝑥, 𝑦) and y is the fractional conversion, 0 for no reaction and 1 for 

complete reaction. φ is called the Thiele modulus. The average value of r̂(x,0) is 1 by definition. 

The boundary conditions are either first kind, Dirichlet, boundary conditions: 

 𝑦(0) = 𝑦(1) = 0 (3.1a) 

or third kind, Robin, boundary conditions: 

 𝑑𝑦

𝑑𝑥
|
𝑥=0

= 2𝐵𝑖0  𝑦(0)   and −
𝑑𝑦

𝑑𝑥
|
𝑥=1

= 2𝐵𝑖1 𝑦(1) (3.1b) 

In Eq. (3.1b), the Biot numbers, Bi, account for an external transfer resistance.  As Bi tends to 

infinity, Eq. (3.1b) reduces to Eq. (3.1a). This problem is often symmetric about the centerline, 

but here we allow for a nonsymmetric profile. Symmetric problems in various geometries can 

be efficiently treated using polynomials in x2 as discussed in section 3.1.5. The Thiele modulus 

and Biot numbers are defined using the half thickness as the characteristic length, so the 

factors of 4 and 2 are required when the full slab is considered.  

This problem has been heavily studied in chemical engineering, including various geometries 

and highly nonlinear source functions which lead to multiple solutions, see 3.1.5. For a more 
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thorough discussion see Villadsen and Michelsen (1978), Rawlings and Ekerdt (2015) and 

references therein. 

For a simple kth order reaction with the reactivity independent of position, the source term is: 

 𝑟̂(𝑥, 𝑦) = (1 − 𝑦)𝑘 (3.2) 

For a first order reaction, k = 1, the analytical solution is: 

 
𝑦 = 1 − 

cosh [𝜑(2𝑥 − 1)]

cosh(𝜑) + 𝜑sinh(𝜑)/𝐵𝑖
 (3.3) 

The quantity of interest from the solution is called the effectiveness factor, η, which gives the 

overall rate of reaction relative to that with no diffusional resistance: 

 

𝜂 =
∫ 𝑟(𝑥, 𝑦)𝑑𝑥

1

0

∫ 𝑟(𝑥, 0)𝑑𝑥
1

0

= ∫ 𝑟̂(𝑥, 𝑦)𝑑𝑥
1

0

 (3.4) 

The effectiveness factor is basically a normalized boundary flux, since the divergence theorem 

in one dimension gives: 

 
−

𝑑𝑦

𝑑𝑥
|
0

1

= 4𝜑2 ∫ 𝑟̂(𝑥, 𝑦)𝑑𝑥
1

0

= 4𝜑2𝜂 (3.5) 

Eq. (3.5) is given the generic name average energy equation, since in a heat transfer setting it 

is an overall energy balance and the right-hand side is the average energy generated. Using 

the analytical solution, Eq. (3.3), this normalized flux is: 

 
𝜂 =  

1

𝜑[coth(𝜑) + 𝜑/𝐵𝑖]
 (3.6) 

η is approximately one for φ < ½ and becomes asymptotic when φ > 2.  The asymptotic state 

corresponds to a condition where all the reactants are consumed and the conversion, y, 

approaches one at the center. 

3.1.1 Orthogonal Collocation Method  

To solve the problem using a Method of Weighted residuals (MWR), we start with a trial 

solution composed of either modal, Eq. (1.2) or (1.21), or nodal, Eq. (1.3) or (2.1), or even 

monomials, Eq. (1.20), trial functions. Modal trial functions, considered in section 3.1.7, are 

popular with spectral or pseudospectral applications, while nodal formulations are normally 

used with orthogonal collocation or differential quadrature. Many early developments of 

orthogonal collocation state that the trial functions are orthogonal polynomials, but then use 

monomials and by use of a monomial transform the problem is reformulated in terms of nodal 

values. All of the approximations are equivalent, so the choice of trial function form is primarily 

a matter of convenience. Transforms, see sections 2.9 and 2.10, can be used to convert from 

one representation to another. We prefer to dispense with transformations and develop nodal 

methods directly using the trial solution: 
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𝑦 = ∑ 𝑦(𝑥𝑖)ℓ𝑖(𝑥)

𝑛+1

𝑖=0

 (3.7) 

The interpolation points include the endpoints, x0 = 0 and xn+1 = 1, while the interior points are 

the roots of an orthogonal polynomial, usually either the roots of Chebyshev polynomials (of 

the 2nd kind), the roots of Legendre polynomials (Gauss points) or the base points of Lobatto 

quadrature. These roots are often called Chebyshev-Gauss-Lobatto (CGL), Legendre-Gauss 

(LG) and Legendre-Gauss-Lobatto (LGL) points, respectively. The base points of Radau (LGR) 

quadrature are used occasionally. 

Many authors seem almost paranoid about the boundary points when used with Gauss points 

in the interior, because the associated quadrature weights are zero. They state that nonzero 

weights are needed on the boundary to help meet the boundary conditions. There is never any 

justification for these statements, and, in fact, we will show that nonzero boundary weights can 

be a detriment rather than an asset for meeting the boundary conditions. 

The residual is formed by substitution of the approximate solution into the equation: 

 
∑ 𝑦(𝑥𝑖)

𝑑2ℓ𝑖

𝑑𝑥2

𝑛+1

𝑖=0

+ 𝑟 (𝑥, ∑ ℓ𝑖(𝑥)𝑦(𝑥𝑖)

𝑛+1

𝑖=0

) =  𝑅(𝑥, 𝒚) (3.8) 

Where y is the vector of nodal values y(xi). With the collocation method the residual is set to 

zero at the interior collocation points, xj, j = 1, …,n. Since ℓi(xj) = δij (the dirac delta function), the 

resulting equation simplifies to: 

 
∑ 𝑦(𝑥𝑖)

𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑗

𝑛+1

𝑖=0

+ 𝑟 (𝑥𝑗, 𝑦(𝑥𝑗)) = 0 (3.9) 

By defining B as indicated below and letting 𝑦𝑖 = 𝑦(𝑥𝑖) the equation simplifies to: 

 
∑ 𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.10) 

The boundary conditions provide two additional conditions, either first kind, Dirichlet, boundary 

conditions: 

 𝑦0 = 𝑦𝑛+1 = 0  

or third kind, Robin, boundary conditions: 

 
∑ 𝐴0,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 2𝐵𝑖0  𝑦0   and   − ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 2𝐵𝑖1 𝑦𝑛+1 (3.11) 

where A and B are differentiation matrices, see section 2.5.: 
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𝐴𝑗𝑖 =

𝑑ℓ𝑖

𝑑𝑥
|
𝑥𝑗

  and    𝐵𝑗𝑖 =
𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑗

   

For Dirichlet conditions, Eq. (3.1a), the boundary values (whether zero or finite) are simply 

substituted into Eq. (3.10). For the third kind conditions, Eq. (3.1b), most texts recommend that 

the boundary condition be satisfied exactly as in Eq. (3.11) [Finlayson (1972), p. 101; Villadsen 

and Michelsen (1978), p. 137; Bert and Malik (1996); Belomo (1997); Trefethen (2000), p. 137; 

Boyd (2000), p. 111, Peyret (2002), p. 59]. Note that this list includes popular references in the 

orthogonal collocation, pseudospectral and differential quadrature literature. When boundary 

condition is satisfied exactly, it is called boundary collocation or a strong treatment. The 

examples in this chapter and the next give a detailed examination of boundary condition 

treatment.  A method superior to Eq. (3.11) is demonstrated. 

To solve the problem, we need only the collocation points, x, i.e. the roots of the orthogonal 

polynomial, and the differentiation matrices, A and B, the derivatives of the Lagrange 

interpolating polynomials.  We also need the quadrature weights, W, for approximating 

integrals, e.g. Eq. (3.4). As described in chapter 2, all of these quantities can be calculated 

from the collocation points.  Software is supplied to perform the calculations. 

Eqs. (3.10) together with the boundary conditions are a set of algebraic equations. After 

substitution of the boundary values for Dirichlet conditions, a set of n equations are left, which 

are usually nonlinear. Several versions of this problem are considered, first with constant 

coefficient, Dirichlet, then Robin boundary conditions. Then, a linear problem with variable 

coefficient is considered. Finally, nonlinear symmetric problems are considered in section 

3.1.5. 

The nonlinear reaction terms appear only on the diagonal, which simplifies the calculations.  

We shall see that for a full moments or Galerkin method, the reaction terms are distributed 

throughout the matrix. 

Linear Source, Constant Coefficients, Dirichlet B.C.   

Fig. 3.1 shows solutions of Eqs. (3.1) and (3.1a) for a first order reaction and φ = 5, i.e. Eq. 

(3.2) with k = 1.  Approximate solutions are shown with n = 4 for collocation at Lobatto, Gauss 

and Chebyshev points.  With this relatively high reaction rate most of the reaction occurs near 

the boundary.  The fifth order polynomial can only approximate the sharp profile by oscillating 

about the exact solution. Actually, since this problem is symmetric about x = 0.5, the coefficient 

of the fifth order term is zero. Later, we will look at efficient methods to exploit symmetry. 

Clearly, for this example, Lobatto points produce a more accurate solution followed in order by 

Chebyshev and Gauss points. 

Fig. 3.2 shows the L2 error norms versus n for the three choices of points. A plot of the L1 error 

norm looks very similar. All methods show the typical exponential convergence with Lobatto 

points giving slightly better results. The error with Chebyshev and Gauss points averages 1.3 



[127] 

 

and 1.9 times that with Lobatto points, which is relatively small since the error decreases 

almost an order of magnitude with each increment of n. 

Using Eq. (3.6), the normalized boundary flux, η = 0.199983. Numerical quadrature can be 

used to calculate this value from the numerical solutions using Eq. (3.4): 

 
𝜂 = ∑ 𝑊𝑖  𝑟̂(𝑥𝑖, 𝑦𝑖)

𝑛+1

𝑖=0

 (3.12) 

For the cases in Fig. 3.1 with n = 4, the calculated fluxes are in error by 0.8, -3.1 and -4.3 

percent for Lobatto, Chebyshev and Gauss points when the flux is calculated by Eq. (3.12).  

The same quantity can be approximated using Eq. (3.5). The derivatives are given by: 

 𝑑𝑦

𝑑𝑥
|
𝑥=0

= ∑ 𝐴0𝑖  𝑦𝑖

𝑛+1

𝑖=0

    and    
𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐴𝑛+1,𝑖  𝑦𝑖

𝑛+1

𝑖=0

 (3.13) 

Using Eq. (3.13), the derivatives of the 

solution at the boundaries are in error by -

14.3, -10.2 and -4.3 percent for Lobatto, 

Chebyshev and Gauss points. These errors 

are much larger and the relative accuracy of 

the methods is a complete reversal of that 

found with Eq. (3.12).  Only Gauss points 

give the same result with either method of 

flux calculation. Shortly, we will explain why 

this is so. For the other two methods, 

integration gives a far more accurate result.  

Fig. 3.3 shows the flux errors for increasing 

n. Relative to Fig. 3.2, this graph shows a 

much greater difference between the 
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methods. For n < 4, the error with all three methods is relatively large, while for n > 14, some 

of the results are affected by rounding errors. Engineering accuracy is obtained with 4 to 8 

points depending on the method and accuracy required. In this range, the errors with Gauss 

and Chebyshev points are similar, while Lobatto points give somewhat greater accuracy. The 

convergence rate with Gauss points is much greater than with Chebyshev points, so Gauss 

points prevail for n > 6. 

Since Figs. 3.2 and 3.3 are so different let us take a closer look at these measures of the error. 

Given the exact solution, y*, the Lp error norm is a measure of the error in the internal profile: 

 

𝜖𝑝 = [∫ |𝑦 − 𝑦∗|𝑝𝑑𝑥
1

0

]

1
𝑝

 (3.14) 

The error in the normalized flux for this linear source function is: 

 
𝜖𝜂 = |∫ (𝑦 − 𝑦∗)𝑑𝑥

1

0

| (3.15) 

These two error measures look similar, especially when p = 1. However, upon closer 

examination, it is clearly possible to achieve an exact flux with an imperfect solution which 

oscillates about the exact solution but in a way that gives the correct solution on average. To 

gain a better understanding of the nature of the error, Figs. 3.4 - 3.7 show the error, i.e. y – y*, 

and the residual, R in Eq. (1.3) for several cases.  

In Figs. 3.4 and 3.6 the residuals are, of course, zero at the collocation points. We note that 

the residual functions look very similar to orthogonal polynomials, Figs. 2.1 and 2.2. In fact, for 

this problem they are. The nature of the residual functions are discussed in section 3.1.6. We 

notice that Lobatto points produce the largest values of the residual (at the boundaries), but 

the smallest and most uniform distribution of the profile errors. Gauss points produce the most 

uniform residual errors, but the largest and least uniform profile errors. This result supports the 

claim that Chebyshev polynomials of the first kind may be best for interpolation but are not 

good for MWR since they will likely produce even larger profile errors.  
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We also note that the errors shown in Figs. 3.5 and 3.7 are close to zero at the collocation 

points and the positive and negative deviations from zero are nearly balanced, so it appears 

reasonable that the error calculated by Eq. (3.15) should be small. However, all of the points 

appear to exhibit this behavior, so why do the solutions converge more slowly with Chebyshev 

points? A simple experiment sheds some light on this question.  

There are two potential sources of error 

in the flux: (1) errors in the profile (Figs. 

3.5 and 3.6) and (2) errors in the 

numerical integration of the profiles. If 

the analytical solution, Eq. (3.3), is 

integrated numerically using the 

quadrature formulas, Eq. (3.12), the 

error due exclusively to the numerical 

integration is obtained. Fig. 3.8 shows 

the quadrature errors together with the 

total flux errors from both sources of 

error. By examination of Fig. 3.8 we see 

that the errors with Chebyshev points 

(Clenshaw-Curtis quadrature) do not 

improve as much as the others. For large n and Gauss or Lobatto points, the overall error from 

both sources of error are less than the integration errors alone for Chebyshev points. It 

appears that the greater accuracy of Gauss and Lobatto quadrature is one reason for the 

difference. The nature of the residual error is discussed more fully in section 3.1.6. 

Villadsen and Michelsen (1978) (p. 85) also noted that other methods may produce similar 

profile errors as we find here (see Fig. 3.2), but the moments and Galerkin methods do an 

especially good job of balancing the error, so that the flux calculation is very accurate. It is 

fortunate that Gauss and Lobatto points have this property, because the flux is the most 
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important result of the calculation. As we shall see, these two methods have equivalence to 

moments and Galerkin methods, respectively.  

There are several disparate studies which discuss convergence properties of these methods. 

A proof of convergence for collocation was first given by Karpilovskaya (1953,1963) and is 

discussed by Kantorovich and Akilov (1964). Error bounds for nonlinear problems are given by 

Ferguson and Finlayson (1972), while an explicit error expression for the linear problem is 

given in Michelsen and Villadsen (1981). Examples of other early work on convergence 

analysis are in Gottlieb and Orzag (1977) and Canuto and Quarteroni (1981). More recent 

work is summarized in many of the reference books cited in chapter 1 [e.g. Canuto, et al. 

(2006)].  

For Lobatto points, Zhang (2005) shows that errors at the interior nodes are smaller than the 

overall error by one degree and more accurate derivatives can be calculated at the n + 1 

Gauss points that lie between the Lobatto points. However, the improved accuracy at the 

interior nodes is not great enough to explain the differences observed in Fig. 3.3, which shows 

exceptional accuracy at the boundary.  A few studies seem to address this issue [Lanczos 

(1973), El-Daou and Ortiz (1992), Namasivayam and Ortiz (1993)]. These studies, based on 

the tau method, analyzed Legendre (Gauss) and Chebyshev methods and found greater 

accuracy with the Legendre case. Although a different problem was considered, a similar 

approach could be used for the current problem and for the Lobatto case.  

The greater observed convergence rate of these global methods is related to the long known 

superconvergence property of some finite element methods [see Křížek and Neittaanmäki 

(1998)]. The superconvergence phenomenon is one where the solution at certain points 

converges at a faster rate than the overall solution. Chapter 6 on finite element methods 

discusses this phenomenon, which also occurs for collocation finite element methods. Since 

the global methods considered here are but a single element of a finite element procedure, it is 

likely the exceptional accuracy of the flux calculations in Fig. 3.3 is a related phenomenon. 

The error curves in Figs. 3.2 and 3.3 converge at a supergeometric rate, i.e. with (n)log(n), but 

are plotted versus log(n) as is customary. Lobatto points give the best convergence rate. 

Gauss points converge at the same rate, but the errors are about 10 to 15 times larger, 

equivalent to about one increment of n. The convergence rate with Chebyshev points is 

roughly half that with Gauss or Lobatto points. If derivatives are used to calculate the flux, Eq. 

(3.13), the results are poor with Lobatto or Chebyshev points. Gauss points produce the same 

result regardless of calculation method. Since all the methods give exponential convergence 

and the Lp error norms are similar, one could easily be misled by an incomplete comparison.  

For this problem, significant differences show up only when fluxes are compared. The problem 

in section 3.2 shows differences in the internal profile errors as well. One of the advantages of 

orthogonal collocation or pseudospectral methods is that virtually exact solutions are feasible. 

The method with Lobatto points is superior for achieving high accuracy for this example, but 

only if fluxes are accurately calculated. 
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Linear Source, Constant Coefficients, Third Kind B.C.   

Now, consider the same problem as above, but with the third kind or Robin boundary 

conditions, Eq. (3.1b). It is clear from Eqs. (3.3) and (3.5) that φ/Bi gives the relative 

importance of internal and external resistance. The shape of the profile is not changed, but the 

boundary value is scaled up to account for the external resistance. We present calculations 

here with φ = 5 as above and Bi = 10. For these conditions both are important, but the external 

resistance is less important than the internal resistance. Other values of Bi are considered to 

determine its effect on the results. 

Most texts recommend that boundary collocation, Eq. (3.11), or an equivalent method, be used 

to approximate the boundary condition. Given that Fig. 3.3 shows poor accuracy of derivatives 

(Lobatto and Chebyshev) for calculating fluxes, one might question the suitability of this 

approach for all but Gauss points.  

Fig. 3.9 compares the profiles for solutions 

calculated with n = 4. Note that the 

boundary value of y is about 0.3, 

indicating roughly 30% of the resistence is 

external. The relative accuracy of the 

methods appears similar to that shown in 

Fig. 3.1 with Dirichlet conditions.  Fig. 3.10 

shows the L2 error norms are almost the 

same for Chebyshev and Gauss points 

and averages about 50 percent greater for 

Lobatto points. However, Fig. 3.11 shows 

that the disparity in fluxes (calculated 

using Eq. (3.12)) is significant. Although, 

the differences are not large for n < 6, the differences in convergence rate are large. As 

discussed below, similar flux errors persist even when Bi is so large that a Dirichlet condition is 
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approached. Since Eq. (3.3) shows that Bi does not change the shape of the profiles, there can 

be no reason for this slower convergence rate other than a flaw in the formulation of the 

method. 

This problem with flux boundary conditions (Lobatto points) first came to light in the early 

1970s [Ferguson and Finlayson (1970), Ferguson (1971), Finlayson (1971), Elnashaie and 

Cresswell (1973)]. The problem is clearly evident for two different problems in Finlayson (1972) 

(see Table 5.7 and Fig. 5.7). The problem is only briefly discussed by Villadsen and Michelsen 

[(1978), p. 248]. Other articles attributed the problem to the strong treatment of boundary 

conditions when quadrature weights are nonzero on the boundary [Young and Finlayson 

(1976), Michelsen and Villadsen (1981)]. Collocation at Gauss points was recommended for 

problems with flux boundary conditions. Unfortunately, many are not aware of the problem, 

because later texts perpetuated the use of boundary collocation. A superior alternative method 

can be found by examining other Methods of Weighted Residuals (MWR) and the foundation 

of orthogonal collocation. 

3.1.2 Method of Moments  

To solve Eq. (3.1) by the method of moments, the residual is weighted by xk for k = 0,…,n - 1; 

however, weighting by any linearly independent set of n polynomials through degree n - 1 will 

give identical results.  For example, the spectral-tau method often uses the first n Legendre 

polynomials [see section 1.2.7, Canuto, et al. (1988)]. The results with Legendre polynomials 

would be identical except possibly for rounding errors. Another suitable set of linearly 

independent polynomials are the Lagrange interpolating polynomials for only the n interior 

points. These polynomials are related to those in Eq. (1.3) by: 

 
ℓ𝑖

∗(𝑥) = ℓ𝑖(𝑥)
𝑥𝑖(1 − 𝑥𝑖)

𝑥(1 − 𝑥)
 (3.16) 

where the asterisk indicates the reduced polynomial. Using these weight functions in Eq. (1.9) 

together with the residual function, Eq. (3.8), and integrating numerically, the problem 

becomes: 

 

∑ [(∑ 𝑦𝑖

𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑘

𝑛+1

𝑖=0

) + 𝑟 (𝑥𝑘, ∑ ℓ𝑖(𝑥𝑘)𝑦𝑖

𝑛+1

𝑖=0

)]𝑊𝑘ℓ𝑗
∗(𝑥𝑘)

𝑚

𝑘=1

= 0 (3.17) 

for j = 1,…,n, where xk and Wk designate quadrature base points and weights, respectively, 

which are not yet specified. The method of moments requires that all boundary conditions be 

satisfied exactly.  For Dirichlet conditions, Eq. (3.3), the boundary values are substituted. For 

third kind conditions, Eq. (3.1b), Eq. (3.11) provides the two extra equations. 

For m > n the quadrature base points are naturally different from the nodal interpolation 

points used to define the trial functions, Eq. (1.3). If m = n, and the interpolation points 

correspond to the quadrature points, some wonderful simplifications occur.  For this case, Eq. 

(3.17) simplifies to: 
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∑ 𝑊𝑗𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊𝑗𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.18) 

Eq. (3.18) is equal to Eq..(3.10) when each row is multiplied by the quadrature weight, Wj, so 

the equations are equivalent. To make this approach work, we need a quadrature formula that 

will give an exact or accurate approximate integration of Eq. (3.17) with m = n and 0 < xi < 1.  

The most accurate quadrature of this type is Gaussian quadrature. We now examine the 

accuracy of Gaussian quadrature for integration of Eq. (3.17). 

The trial functions, ℓi(x), are polynomials of degree n + 1, so the second derivative is of degree 

n – 1.  The weight functions, ℓj
*(x) are of degree n – 1.  Combining the two terms, the diffusion 

term is of order 2n – 2 and the first order reaction term is of order 2n.  Since Gaussian 

quadrature is exact for polynomials through degree 2n – 1, integration of the diffusion terms is 

exact, while the source term misses exact integration by one degree. To achieve an exact 

representation of the method of moments, the following integration must be performed more 

accurately:  

 
𝐷𝑗𝑖 = ∫ ℓ𝑗

∗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥
1

0

 

       = −
1

2𝑛 + 1
𝑥𝑖(1 − 𝑥𝑖)𝑊̂̃𝑖

𝑏𝑊̂̃𝑗
𝑏    for 𝑖 ≠ 𝑗 

       =
2𝑛

2𝑛 + 1
𝑊𝑖    for 𝑖 = 𝑗 

       ≈ 𝛿𝑗𝑖𝑊𝑖  

(3.19) 

We call D the mass matrix. This name reflects the origins of these methods in structural 

mechanics. The analytical expression (lines 2 and 3 above) is derived in section 2.7, where 

𝑊̂̃𝑖
𝑏 are the normalized and shifted barycentric weights defined by Eq. (2.66) and Wi are the 

Gaussian quadrature weights. The collocation method produces the last line above, which is 

clearly a reasonable approximation of the full matrix. In finite element methods, the reduction 

of the mass matrix to a diagonal one is called lumping. Lumping is achieved automatically here 

due to the approximate integration. The mass matrix is frequently associated with time 

derivatives and for this reason it is also called the capacity matrix. 

To list the complete set of equations, it is convenient to combine the boundary and interior 

equations by defining:  

 𝐶𝑗𝑖 = 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝛿𝑗,0𝐴0,𝑖 − 𝑊𝑗𝐵𝑗𝑖 (3.20) 

With this definition, the complete set of equation for the first order reaction with constant 

coefficients and third kind boundary conditions is: 
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𝛿𝑗,02𝐵𝑖0𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖1𝑦𝑛+1 + ∑(𝐶𝑗𝑖 + 4𝜑2𝐷𝑗𝑖)𝑦𝑖

𝑛+1

𝑖=0

= 4𝜑2 ∑ 𝐷𝑗𝑖

𝑛+1

𝑖=0

= 4𝜑2𝑊𝑗 (3.21) 

C is called the stiffness matrix. Another name which comes from structural mechanics. For an 

arbitrary set of points, C is normally nonsymmetric. However, in section 2.6 we show that due 

to the specific orthogonality of the Legendre polynomials, it is symmetric for collocation at 

Gauss points. For the full moments method the complete matrix problem is not symmetric 

because of D, but with its diagonal approximation the complete system of equations is 

symmetric and positive definite.  

One deficiency of orthogonal collocation, pseudospectral or differential quadrature methods is 

that self-adjoint operators do no lead to symmetric matrix problems. The usual implementation 

of the equivalent spectral-tau method leads to a horribly messy matrix structure. This 

development shows that by a simple reorganization of the equations this desirable matrix 

structure is achieved with Gauss points. A symmetric matrix problem cuts the calculations for 

solution almost in half (Fadeeva, 1959). This matrix structure has theoretical and 

computational benefits in other areas, e.g. eigenvalue problems or iterative solution with the 

conjugate gradient method. For a full moments method, more calculations are required 

because the mass matrix is not symmetric. Also, for nonlinear reaction terms, the mass matrix 

must be recalculated every Newton iteration. These extra calculations are rarely worth the 

effort. More complicated source terms are treated below in section 3.1.5.  

Lobatto quadrature with n interior points has sufficient accuracy to integrate all the terms in 

Eq. (3.17) exactly for a first order reaction. However, it does not reduce to a collocation method 

because end points terms would appear in Eq. (3.18). These terms are zero with Gauss points, 

because the quadrature weights are zero on the boundaries.  Orthogonal collocation at Lobatto 

quadrature base points bears no direct relationship to the moments method. With Chebyshev 

points, the associated Clenshaw-Curtis quadrature also has nonzero quadrature weights at the 

endpoints. In addition, Clenshaw-Curtis quadrature is not accurate enough to produce a good 

approximation to the moments method. For these reasons, it also bears no direct relationship 

to the method of moments. The method of moments and collocation at Gauss points is an 

important example where quadrature weights on the boundary are undesirable, contrary to the 

claims of some authors. 

The mass and stiffness matrices, D and C in Eqs. (3.19) and (3.20), are available from the 

computer codes described in Chapter 2.   

3.1.3 Galerkin Method  

To solve the problem with the Galerkin method, the residual is weighted by the trial functions 

ℓj(x). Since the Robin boundary conditions reduce to Dirichlet conditions for large Bi number, 

we will consider only the more general conditions, Eq. (3.1b). The Galerkin method permits two 

different methods to treat boundary conditions involving derivatives. The boundary conditions 

may be satisfied exactly or they may be treated as natural boundary conditions. The natural 
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boundary condition treatment is derived from variational principals and provides a means to 

integrate the influence of the surroundings on the solution domain [Finlayson (2014)]. Dirichlet 

conditions can be thought of as degenerate natural conditions [Courant (1943)], e.g. infinite Bi 

number.  

Although it is not a fundamental requirement, the normal procedure with the orthogonal 

collocation, pseudospectral or differential quadrature method is to satisfy the boundary 

conditions exactly, i.e. boundary collocation, Eq. (3.11). The short development in Appendix B 

shows the difficulties with this approach. For this reason, we will use the natural boundary 

condition treatment here. With this approach, the boundary condition is integrated into the 

solution procedure and is satisfied approximately along with the rest of the differential 

equation.  

To solve the problem with the Galerkin method, the residual Eq. (1.3) is weighted by the trial 

functions ℓj(x), for j = 0,…,n + 1.  The equations are converted to the weak formulation by 

integrating the second derivative term by parts: 

 

∑ ℓ𝑗

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
|
0

1

𝑦𝑖

 

− ∫ (∑
𝑑ℓ𝑗

𝑑𝑥

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
𝑦𝑖 − ℓ𝑗𝑟(𝑥, 𝑦))𝑑𝑥

1

0

= 0 (3.22) 

The first term contains the two boundary derivatives, so we substitute the boundary conditions 

and integrate the other terms using a suitable quadrature formula: 

 
𝛿𝑗,02𝐵𝑖0𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖1𝑦𝑛+1 + ∑ 𝑊𝑘 (∑

𝑑ℓ𝑗

𝑑𝑥
|
𝑥𝑘

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
|
𝑥𝑘

𝑦𝑖 − ℓ𝑗(𝑥𝑘) 𝑟(𝑥𝑘 , 𝑦(𝑥𝑘)))

𝑚

𝑘=1

= 0 (3.23) 

The xk in Eq. (3.23) designate the quadrature base points, which differ from the nodal 

interpolation points for m > n + 2.  

Consider quadrature with n interior points. Since the trial functions are polynomials of degree 

n + 1, the diffusion term is of degree 2n.  For a first order reaction the source term is of degree 

2n + 2.  An n point Gaussian quadrature is exact through degree 2n - 1, so neither term 

would be integrated exactly.  On the other hand, Lobatto quadrature with n interior points 

gives exact integration through degree 2n + 1, so it gives exact integration for the diffusion 

term, but misses exact integration of the reaction term by one degree. This is the same level of 

discrepancy found when the moments method is approximated with Gaussian quadrature. 

Radau quadrature is one degree less accurate than Lobatto quadrature, so it also integrates 

the diffusion term exactly. 

Using quadrature with n interior points, Eq.(3.23) reduces to: 

 
𝛿𝑗,02𝐵𝑖0𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖1𝑦𝑛+1 + ∑ 𝐶𝑗𝑖

𝑛+1

𝑖=0

𝑦𝑖 − 𝑊𝑗  𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.24) 
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where: 

 
𝐶𝑗𝑖 = ∑ 𝑊𝑘𝐴𝑘𝑗𝐴𝑘𝑖

𝑛+1

𝑘=0

= 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝛿𝑗,0𝐴0,𝑖 − 𝑊𝑗𝐵𝑗𝑖 (3.25) 

Since Lobatto and Radau quadrature can perform the integration by parts exactly, it follows 

that the stiffness matrix, C, can be calculated by either expression above. The far right 

expression is identical to Eq. (3.20).  Given this relationship, it is clear that at the interior 

points, Eq. (3.24) is identical to Eq. (3.18) and equivalent to Eq. (3.10), i.e. collocation.  

To examine the different treatment of the boundary conditions, compare Eqs. (3.11) and (3.24) 

at the boundaries, j = 0 and j = n + 1. Substituting the far right expression of Eq. (3.25) for C, 

the boundary equations are: 

 

2𝐵𝑖0𝑦0 − ∑ 𝐴0𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊0 (∑ 𝐵0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(0, 𝑦0)) = 0 

2𝐵𝑖1𝑦𝑛+1 + ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(1, 𝑦𝑛+1)) = 0 

(3.26) 

Eq. (3.26) differs from (3.11) by the extra term on the right. It is the boundary quadrature 

weight multiplying the interior residual, Eq. (3.8), evaluated at the boundaries, R(0,y) and 

R(1,y). Rather than setting the boundary condition residual to zero, this procedure sets the 

weighted combination of the boundary condition residual and the interior residual at the 

boundary to zero, like Eq. (1.15). Unlike boundary collocation, the boundary condition is not 

satisfied exactly, but both residuals will converge to zero at an exponential rate, along with the 

other residuals.  

Note also that the right expression of Eq. (3.25) and Eq. (3.20) are identical for the calculation 

C, so Eqs. (3.24) and (3.26) are equally valid for Gauss points, since the quadrature weights 

are zero at the boundaries. The left expression of Eq. (3.25) is not valid for Gauss or 

Chebyshev points, because the quadrature is not accurate enough to perform the integration 

by parts exactly. For an infinite Bi number, Eqs. (3.24) and (3.26) reduce to the Dirichlet 

conditions, y0 = yn+1 = 0. 

Lobatto quadrature calculates the second derivative term exactly, but misses exact integration 

of the source term by one degree. For the first order reaction, the full Galerkin method requires 

a more accurate calculation of the mass matrix. The exact integration is worked out in section 

2.7: 
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𝐷𝑗𝑖 = ∫ ℓ𝑗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥

1

0

 

=
(−1)(𝑖+𝑗+1)

2𝑛 + 3
√𝑊𝑖𝑊𝑗    for 𝑖 ≠ 𝑗 

=
2(𝑛 + 1)

2𝑛 + 3
𝑊𝑖     for 𝑖 = 𝑗 

≈ 𝛿𝑗𝑖𝑊𝑖  

(3.27) 

Collocation at Lobatto points approximates this matrix by a diagonal one composed of the 

quadrature weights as shown in the last expression above. Substituting a more accurate 

integration of the source term into the Galerkin method, Eq. (3.23), produces an equation 

identical in form to Eq. (3.21). For the Galerkin method, both the stiffness and mass matrices 

are symmetric. The mass matrix is full for the Galerkin method and is diagonal or lumped for 

collocation at Lobatto points.  For more complex rate expressions, a full mass matrix adds 

complexity and calculations which do not normally improve the accuracy enough to warrant the 

extra calculations, see section 3.1.5. 

In summary, with the development above and in Appendix B, collocation at Lobatto quadrature 

base points is an accurately approximation of the Galerkin method, but only when a natural or 

weak treatment of flux boundary conditions is used. Section 3.1.2 shows collocation at Gauss 

points is an accurate approximation of the method of moments. Collocation at Radau points is 

in between and reduces to boundary collocation at one boundary and a natural treatment at 

the other.  

The Clenshaw-Curtis quadrature is not accurate enough to give a good approximation to either 

the Galerkin or moments method. Collocation at Chebyshev points approximates MWR with 

the extra radical term, 1 √1 − 𝑥2⁄ , in the weight function. Chebyshev points and quadrature 

weights are between Gauss and Lobatto points and weights (see Figs. 1.4 and 1.5), so can 

also be justified on that basis. We propose that Chebyshev points also use Eq. (3.24) with C 

calculated by Eq. (3.20) or the far right expression of Eq. (3.25).  Then, it will still be equivalent 

to collocation at the interior points, but with a natural treatment of flux boundary conditions.  

Formulations using the stiffness matrix and a natural treatment of flux boundary conditions are 

referred to as weak formulations. Nevertheless, the method is equivalent to collocation at the 

interior points. Eq. (3.24) or equivalently (3.26) is used at the boundary points. The boundary 

condition treatment is equivalent to boundary collocation only when the quadrature weight is 

zero at the boundary. Unlike with Gauss and Lobatto points, the stiffness matrix for Chebyshev 

points is not symmetric (except for n < 4). Chebyshev points have the advantage when fast 

Fourier transforms (FFT) can be brought to bear, but the disadvantage when symmetric matrix 

problems are beneficial. Also note the natural boundary condition treatment causes boundary 

rate terms to appear in the approximation, Eq. (3.26). For a nonlinear rate expression, all n + 2 

equations are nonlinear, whereas with Gauss points the two boundary equations are linear.  

These linear equations can be eliminated initially so only n nonlinear equations must be 

solved iteratively. 
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The relationship between collocation at Lobatto points and the Galerkin method is what 

motivated Villadsen and Stewart (1967) to select Lobatto points (they treated the equivalent 

symmetric problem discussed in section 3.1.5). However, they considered only Dirichlet 

conditions. The natural boundary condition treatment for the Galerkin method is advocated by 

Finlayson and Scriven (1966). They point out this treatment sets a combination of boundary 

and interior residuals to zero, as in Eq. (3.26). The natural treatment is standard in most finite 

element applications. Its use with collocation at Lobatto points was suggested by Young (1977) 

and described more fully by Funaro (1988, pp 143, 204). Canuto (1986) discussed an 

apparently similar procedure for Chebyshev and Lobatto points. The procedure is also 

described in later work [Canuto, et al. (2006), Shen, et al. (2011)]. Unfortunately, Canuto, et al. 

chose to rename the method G-NI (Galerkin with Numerical Integration), which is likely to 

cause much confusion, and besides, the Galekin relationship has been known since 1967. 

Shen, et al. used the more appropriate name collocation in the weak form. These texts 

describe not only the weak or natural treatment, but also the strong, boundary collocation 

treatment. None seem to claim a major benefit to the weak formulation. Consequently, most 

applications use boundary collocation. The weak treatment should be the standard, correct 

one, while the strong formulation is incorrect. The examples to follow make a compelling case 

to support this statement. 

Linear Source, Constant Coefficients, Third Kind B.C., Galerkin/moments.   

Fig. 3.12 shows the flux errors from Fig. 

3.11 updated with results from full 

Galerkin and moments methods and 

Lobatto and Chebyshev collocation with 

a natural treatment of the boundary 

conditions.  These results are labeled 

“Nat.” while the boundary collocation 

results are labeled “bc”.  

The improvement by using natural 

boundary conditions is impressive, 

especially with Lobatto points. With the 

natural boundary condition treatment, 

the convergence rates for the three 

choices of point are similar to those in 

Fig. 3.3. Since the problem reduces to the Dirichlet problem for large Bi, the effect of this 

parameter was investigated by solving the problem with Bi = 2, 5, 10 and 50 for comparison. 

With the largest value, the condition approaches a Dirichlet condition. For the Lobatto point 

cases in Fig. 3.12 with n = 8, the ratio of the error with boundary collocation relative to a 

natural treatment, is 1.4x103. This error ratio at n = 8 varies from 7x103 for Bi = 2 to 0.3x103 for 

Bi = 50. The convergence rates are similar, so the disparity grows with n. Clearly, the error 

with boundary collocation can be several orders of magnitude greater even for quite large 
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values of Bi. The errors with Chebyshev points are also reduced by using a natural boundary 

condition treatment, but to a lesser extent, but still almost an order of magnitude at n = 8.  

As discussed above, the natural boundary condition treatment, Eq. (3.26), sets a weighted 

combination of the boundary condition and the boundary value of the interior residual to zero. 

Neither residual will be identically zero, but they converge to zero at an exponential rate. Fig. 

3.13 shows the convergence behavior of these two residuals as a function of n for Bi = 10. 

Graphs for the other values of Bi are very similar. As shown in Eq. (3.26), the ratio of the two 

residuals is equal to the boundary quadrature weight, W0 or Wn+1 which are O(1/(2n2)) for 

Lobatto quadrature and half that for Clenshaw-Curtis quadrature (Chebyshev points).   

We also note that in Fig. 3.12 the Galerkin 

and moments methods improve in a stair 

step fashion. When n is even, the results 

with Galerkin and Lobatto points are 

identical and the results with moments 

and Gauss points are identical. This result 

is an artifact caused by the symmetry of 

the solution about x = 0.5. For example, 

with n = 4 the trial solution is a 5th order 

polynomial, but the highest order term has 

a zero coefficient because of the 

symmetry. Lobatto points normally miss 

exact integration of the Galerkin method 

by one degree, but since the problem symmetry knocks out the highest degree term, the two 

methods agree. With n = 3 the polynomial is 4th order, so the Galerkin method is just as good 

as when a 5th order term is included. An analogous situation applies for the moments method 

and collocation at Gauss points.  

The problem here is one of the few cases when collocation at Lobatto points is identical to a 

Galerkin method and collocation at Gauss points is identical to the method of moments. 

Consider the linear equation with variable coefficients: 

 𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑦

𝑑𝑥
) + 𝑝(𝑥)

𝑑𝑦

𝑑𝑥
+ 𝑞(𝑥)𝑦 + 𝑟(𝑥) = 0  

The trial and weight functions are degree n + 1 and Lobatto quadrature is exact for 2n + 1, so 

integration is exact if the residual does not exceed degree n. Unless the solution is symmetric, 

exact integrals are produced if k(x) is linear, p(x) is constant, q(x) = 0 and r(x) is a polynomial 

of degree n or less. If the solution is symmetric, exact integration is achieved when q(x) is a 

constant. Collocation at Gauss points is identical to the method of moments under the same 

conditions, because the weight functions are two degrees less, n – 1, but so is the quadrature 

accuracy, 2n - 1. Usually, Gauss and Lobatto points give approximations to the moments and 
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Galerkin methods, but often very good ones. Some texts incorrectly state that collocation at 

Gauss points replicates the Galerkin method for more general conditions [Boyd (2000), p. 89]. 

This example problem can be treated more efficiently by exploiting the symmetry with 

polynomials in x2, which is discuss below in section 3.1.5. 

3.1.4 Mass Conservation and Fluxes 

One is usually interested in the flux at the boundaries.  For example, if a fluid were flowing on 

both sides of the slab we would want to know the rate of mass or heat transfer from the slab.  

For the symmetric problem, the transfer is quantified by a single normalized flux, η given by 

Eqs. (3.4) and (3.5). For a nonsymmetric problem one would generally want the breakdown of 

left and right side fluxes, while in multiple dimensions the flux profiles along the boundaries 

may be important. The average energy equation or divergence theorem gives only the total 

flux. If the sum of the individual fluxes (or integral of the boundary profiles in multiple 

dimensions) equals the total flux, this gives us greater confidence in the individual values.  

The total of the fluxes will give the average rate provided the method conserves mass. Eq. 

(3.5) , the divergence theorem or average energy equation is just an overall balance. It is 

derived by integrating Eq. (3.1) across the domain.  In general, a method will be conservative if 

the integral of the residual is zero. If the MWR weights (wi(x) in Eq.  (1.9)) contain unity in 

some combination, the method will be conservative. 

The method of moments and collocation at Gauss points are conservative regardless of the 

formulation. If formulated with monomials or Legendre polynomials the first weight function 

would be x0 or P0 = 1. With our formulation from Section 3.1.2, =1)x(*

i .  Since this method is 

conservative, Eq. (3.5) is obeyed when the boundary fluxes are calculated by differentiation of 

the approximate solution, Eq. (3.13). This explains why the errors in Fig. 3.3 are the same with 

either method of calculation for collocation at Gauss points. 

For the Galerkin method and collocation at Lobatto points, the sum of all the Lagrange 

interpolating polynomials is also unity.  However, if we consider Dirichlet boundary conditions, 

the boundary values are directly substituted into Eq. (1.3) so the first and last interpolating 

polynomials are not used as weight functions.  The method appears not to be conservative due 

to the left over terms on the right side below: 

 𝑑𝑦

𝑑𝑥
|
0

1

+ ∫ 𝑟(𝑥, 𝑦) 𝑑𝑥
1

0

= ∫ [ℓ0(𝑥) + ℓ𝑛+1(𝑥)]𝑅(𝑥, 𝒚)𝑑𝑥
1

0

 (3.28) 

Using quadrature, Eq. (3.28) is approximated by: 

 𝑑𝑦

𝑑𝑥
|
0

1

+ ∫ 𝑟(𝑥, 𝑦) 𝑑𝑥
1

0

= 𝑊0𝑅(0, 𝒚) + 𝑊𝑛+1𝑅(1, 𝒚) (3.29) 

The two terms on the right side are those needed to correct the fluxes in the natural boundary 

condition treatment, Eq. (3.26), so the correction makes the method conservative. To be 

consistent with the Galerkin method, the individual fluxes should be approximated by:  
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 𝑑𝑦

𝑑𝑥
|
𝑥=0

= ∑ 𝐴0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊0 (∑ 𝐵0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(0, 𝑦0)) = ∑ 𝐴0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊0𝑅(0, 𝒚) 

𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(1, 𝑦𝑛+1)) = ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1𝑅(1, 𝒚) 

(3.30) 

The same equations written with the stiffness matrix are: 

 𝑑𝑦

𝑑𝑥
|
𝑥=0

= − ∑ 𝐶0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊0𝑟(0, 𝑦0) 

𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐶𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1𝑟(1, 𝑦𝑛+1) 

(3.31) 

When computed from these equations, the two fluxes will be consistent with Eq. (3.5), the 

average energy equation or divergence theorem. For the full Galerkin method, the fluxes must 

be calculated with the equivalent expression using the mass matrix, D. For the Robin boundary 

conditions the expressions are consistent with Eq. (3.1b), so it would be far simpler to calculate 

fluxes by multiplying 2Bi by the boundary values of y. However, this calculation is subject to 

roundoff errors when Bi is large.  

Note that Eqs. (3.30) and (3.31) are also valid with Gauss points, since the boundary 

quadrature weights are zero. This equivalence is useful when writing one computer code which 

will work with either type of points. Using these equations with Chebyshev points will also 

make that method conservative, which provides some additional justification for using a natural 

treatment with Chebyshev points. 

The relationship shown above, between the overall balance and natural boundary condition 

treatment was noted by Finlayson and Scriven (1966). Ferguson (1971) proposed 

approximation of flux boundary conditions using the integral rather than the derivative in Eq. 

(3.5). Ferguson’s procedure has some limitations but is equivalent to a natural treatment when 

it is applicable. The natural treatment is equivalent, more general and easier to implement.  

Linear Source, Variable Coefficients, Dirichlet B.C.   

To make the problem nonsymmetric and more interesting, consider the case of a first order 

source, but with a coefficient which varies with position according to: 

 𝑟̂(𝑥, 𝑦) = (0.2 + 1.6𝑥2(3 − 2𝑥))(1 − 𝑦) = 𝑞(𝑥)(1 − 𝑦) (3.32) 

The spatial variation, q(x), goes from 0.2 on the left edge to 1.8 on the right edge, with an 

average value of 0.5 on the left half and 1.5 on the right half giving an overall average of 1.0. 

For a given value of φ, the average rate constant is the same as with Eq. (3.2) for k = 1. Fig. 

3.14 shows solutions to this problem for φ = 5 with collocation at Gauss, Chebyshev, and 

Lobatto points.  The solution with Lobatto points is again slightly more accurate than with the 
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other two choices. In Fig. 3.14, the 

“exact” solution is one computed with 

large n which is exact for practical 

purposes. 

When the problem is solved with the 

Galerkin or moments method a more 

accurate mass matrix must be 

calculated.  For many problems, 

especially nonlinear ones, an exact 

calculation would be cumbersome and 

is not necessary. Approximate 

calculations with quadrature formulas 

are most often used. Orthogonal 

collocation is a special case of 

approximate quadrature when the interior quadrature points and collocation points coincide. 

Another common procedure is to interpolate variable or nonlinear terms into the trial space, 

i.e.: 

 
𝑟(𝑥, 𝑦) ≈ ∑ ℓ𝑖(𝑥)𝑟(𝑥𝑖, 𝑦(𝑥𝑖))

𝑛+1

𝑖=0

 (3.33) 

For the method of moments, these various approaches give: 

 
𝐷𝑗𝑖 = ∫ ℓ𝑗

∗(𝑥)ℓ𝑖(𝑥)𝑞(𝑥) 𝑑𝑥
1

0

≈ ∑ 𝑊𝑘ℓ𝑗
∗(𝑥𝑘)ℓ𝑖(𝑥𝑘)𝑞(𝑥𝑘) 

𝑚

𝑘=1

  or 

≈  𝑞(𝑥𝑖)∫ ℓ𝑗
∗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥

1

0

  or 

≈  𝑞(𝑥𝑖) 𝑊𝑖  𝛿𝑖𝑗 

(3.34) 

Where the asterisk denotes the reduced functions defined by Eq. (3.16) and D0i = Dn+1,i = 0 for 

the moments method. For the Galerkin method the trial functions, ℓj(x), are used instead of the 

reduced functions. The approximation with quadrature is given on the last line, while the 

approximation for interpolation into the trial space, Eq. (3.33), is given on the second line. 

Finally, the approximation using collocation is given on the last line. Once calculated, the mass 

matrix is substituted into Eq. (3.21). The collocation approximation reduces to Eq. (3.24). As Bi 

→ ∞ the equations reduce to specified boundary values, i.e. Dirichlet conditions.  

When the mass matrix is calculated with quadrature, one must select the quadrature formula 

and the number of quadrature base points, m in Eq. (3.34). We select Gaussian quadrature 

for the moments method and Lobatto quadrature for the Galerkin method. In the discussion 

above for the constant coefficient problem, when comparing collocation at Gauss points with 

the method of moments and collocation at Lobatto points with the Galerkin method, we found 

collocation missed exact integration by one degree. The variable coefficient for this example, 
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q(x) in Eq. (3.32), is degree 3, so both collocation methods miss exact integration by 4 

degrees. With the interpolation approach exact integration is still missed by one degree. The 

approach using numerical quadrature is exact if n + 2 quadrature points are used. 

This example provides a good test of the integration accuracy requirements, because with only 

one additional quadrature point, the integration is still two degrees shy of exact. So, besides 

collocation and the Galerkin method there are two additional ways to approximate D: (1) 

interpolation of the source terms, Eq. (3.33) and (2) approximate integration with n + 1 interior 

quadrature points.  Similarly, there are two approximate methods of calculating D for the 

moments method. All of these possibilities give a large volume of results for this problem. As a 

matter of notation, the method will be called a full Galerkin method or a method of moments, 

whenever the integrals are more accurate than with the collocation methods. 

Fig. 3.14 shows the calculated results with collocation using the three choices of collocation 

points.  Fig. 3.15 compares collocation at Gauss points with the method of moments using 

Table 3.1 Calculated Fluxes, Variable Coefficients, n = 4 

 Flux 
left 

Flux 
right 

Flux 
Total 

Error 
left 

Error 
right 

Error 
total 

Exact  0.05062 0.13368 0.18429    
Gauss Collocation 0.05013 0.12097 0.17110 -0.96% -9.51% -7.16% 
Chebyshev Collocation 0.05026 0.12910 0.17936 -0.71% -3.42% -3.68% 
Lobatto Collocation 0.05073 0.13742 0.18814 0.21% 3.80% 3.09% 
moments 0.04902 0.12598 0.17500 -3.16% -5.76% -5.04% 
moments, interpolated r 0.04623 0.12473 0.17097 -8.66% -6.69% -7.23% 

moments, n+1 Gauss 0.04903 0.12654 0.17557 -3.14% -5.34% -4.73% 

Galerkin 0.05053 0.13561 0.18614 -0.17% 1.45% 1.00% 
Galerkin, interpolated r 0.05070 0.13601 0.18671 0.16% 1.75% 1.31% 

Galerkin, n+1 Lobatto 0.05055 0.13583 0.18638 -0.13% 1.61% 1.13% 

Chebyshev, derivative 0.04795 0.11116 0.15911 -5.27% -16.84% -13.66% 
Lobatto, derivative 0.04666 0.10497 0.15163 -7.82% -21.47% -17.73% 
Galerkin, derivative 0.03953 0.10974 0.14927 -17.21% -16.93% -17.00% 
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both an exact mass matrix and interpolated rates. Fig. 3.16 compares collocation at Lobatto 

points with the Galerkin method. For the Galerkin method, the other approximations were not 

distinguishable from those in Fig. 3.16.  

Table 3.2 shows results of the flux calculations for this problem when n = 4. For the results in 

the table, “n+1” indicates the number of interior quadrature points used in the approximation of 

the mass matrix and “interpolated r” indicates those for which Eq. (3.33) was used. In these 

results Eq. (3.30) or (3.31) was used to calculate the fluxes for Lobatto or Chebyshev points, or 

the equivalent method for the Galerkin method. The table results labeled, “derivative”, 

indicates Eq. (3.13) was used to calculate the fluxes. From Fig. 3.15 it does not appear that the 

additional complexity of the moments method and a full mass matrix, D, adds any substantial 

accuracy to the results. However, Table 3.2 indicates there is some improvement, but the 

improvement is spotty. Some flux errors are larger, especially those at x = 0, which is the 

“easy” side due to the more gentle profile. Fig. 3.16 indicates that relative to Lobatto 

collocation, the Galerkin method gives a small improvement to the profiles. Table 3.2 shows 

that with the Galerkin method, the right side and total errors are reduced by about a factor of 3. 

Also, a Galerkin approximate mass matrix with 5 interior points is very nearly as good as an 

exact mass matrix. 

Fig. 3.17 shows the L2 error norms versus n. As before, the L1 and L2 errors are relatively 

insensitive to differences between the methods. The ratio of best to worst error averaged over 

all n from 2 to 16 is only about 2. The ratio of the average error relative to the Galerkin method 

for Lobatto, Chebyshev and Gauss collocation is 1.02, 1.36 and 2.03, respectively.  

Fig. 3.18 shows the error of the flux on the right side, x = 1, for all the methods. The graph is 

busy due to all the results, but it is worthwhile to examine the effect of approximate and exact 

integration for the Galerkin and moments methods, since Gauss and Lobatto collocation are 

also approximations. In this graph, the results labeled “Interp” are for the interpolated source 
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terms, Eq. (3.33) and those labeled “n+1” use one 

additional quadrature point to give a full but 

approximate mass matrix. “Der” is used to indicate 

fluxes estimated by the first derivative. The other 

methods calculate fluxes using Eq. (3.30) or (3.31) 

(or equivalent for Galerkin).  

Again, the results calculated from the first 

derivative are much less accurate except for the 

Gauss-collocation and moments methods for 

which they are identical. All the evidence shows 

that for other methods derivatives, Eq. (3.13), 

should never be used to estimate fluxes. If the 

reader takes this one result to heart, writing this 

monograph will have been worthwhile. 

Fig. 3.18 shows that the Galerkin method is generally the best method, but frequently the 

approximate mass matrices give results that are just as good. Exact integration of the mass 

matrix gives no clear improvement for the moments method either. Due to the large number 

and variability of the results in Fig. 3.18, they are further summarized in Table 3.3. Table 3.3 

lists the ratio of the error for the individual method relative to the Galerkin method 

geometrically averaged for n = 2 through 16. There could be other ways to summarize these 

results, but this method yields several clear conclusions. The full Galerkin and moments 

methods are about twice as accurate as their respective collocation counterparts (Lobatto and 

Gauss points). Interpolation of the source terms adds only a slight improvement over 

collocation. One quadrature point greater than collocation is on the average slightly better than 

an exact Galerkin or moments method. This type of behavior has been observed in finite 

element methods (Strang and Fix (1973)). Nonlinear examples are considered in the next 

section. If one considers the computational effort, collocation will invariably win. However, if a 

full Galerkin or moments method is desired it is wasteful to get carried away with extremely 

accurate integration.  

The comparisons in Figs. 3.18 and Table 3.3 are akin to splitting hairs, since one increment of 

n normally reduces the error by almost an order of magnitude. For example, the 

Gauss/moments methods give errors that are about 8 times larger than the Lobatto/Galerkin 

counterparts, equivalent to about one increment of n. In compensation for this difference, the 

treatment of flux boundary conditions is simpler and more intuitive, Eq. (3.11) rather than 

(3.24) or (3.26), and the usually nonlinear source terms appear only at the n interior points. 

The simplicity of using boundary collocation is one reason for the popularity of Gauss points in 

the orthogonal collocation literature. The natural boundary condition treatment required to 

achieve good accuracy with the other choices is usually not considered by others. 

Chebyshev points are historically the most popular choice in the pseudospectral and 

differential quadrature literature. It is the method of choice for problems requiring large n for 

Table 3.3 Average Relative Error of Flux 
at x = 1, Variable Coefficients,  

Eq. (3.32) 

 Relative 
Error 

Gauss Collocation 17.73 

Chebyshev Collocation 193.7 

Lobatto Collocation 2.37 

moments 8.61 

moments, interpolated r 13.84 

moments, n + 1 Gauss 7.57 

Galerkin 1.00 

Galerkin, interpolated r 1.70 

Galerkin, n + 1 Lobatto 0.76 
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which FFT methods can be used. For the problem considered here, relative to the other 

choices, Chebyshev collocation is not competitive when flux calculations are carried out as 

normally recommended. With the improved flux calculations, Eq. (3.30) or (3.31), the results 

are good for small n, but suffer from a lower convergence rate for large n. When compared to 

the other choices, the case supporting the use of Chebyshev points is:  

- x and W can be efficiently calculated 

- approximates Chebyshev-Galerkin method with radical, 1/√1 − 𝑥2 

- justified by point distribution relative to other methods 

On the other side of the argument: 

- efficiency of x and W calculation insignificant 

- Chevyshev-Galerkin convergence slower than integrated MWR without radical 

- less efficient calculations due to nonsymmetric matrices 

The argument concerning point distributions is an interesting one. Many view the collocation 

point selection problem strictly from the standpoint of point distributions. Since Chebyshev 

points are between Gauss and Lobatto points (see Fig. 1.5), the results should be intermediate 

between them. If we compare the profiles and error norms that argument holds up, but it falls 

apart when comparing fluxes. The other characteristic to consider is that Gauss and Lobatto 

quadrature are both accurate for O(2n), while Clenshaw-Curtis quadrature is accurate for 

O(n), see Figs. 2.34, 2.35 and 3.8. It appears that the differences are not so important for 

small n, but the quadrature accuracy affects the convergence rate for fluxes at large n. Further 

analysis on this subject is warranted.  

Proponents for the use of Chebyshev points cite the greater efficiency for computing the 

fundamental approximations, x and W. This advantage is irrelevant for most problems since 

those calculations require a fraction of a millisecond for n < 1000. Also, one can make the 

argument that if a problem requires say n > 10, finite element trial functions will likely be more 

efficient in most cases. In later chapters, we describe orthogonal collocation finite element 

methods which can achieve very high order. 

Many authors bemoan the lack of symmetry for collocation or pseudospectral approximations 

for self adjoint operators. When conventionally formulated, all methods suffer from this 

deficiency. However, a simple rescaling of the equations with the quadrature weights makes 

the method symmetric for Gauss, Radau and Lobatto points, see Eq. (3.18) and (3.24). The 

number of arithmetic operations to solve a symmetric matrix problem is roughly half that for a 

nonsymmetric problem (Fadeeva, 1959). There are theoretical and computational advantages 

for other problems as well, e.g. eigenvalue problems for parabolic equations in Chapter 4. 

These computational advantages tend to offset any advantages of Chebyshev points. 

3.1.5 Symmetric and Nonlinear Problems 

Consider now the diffusion/conduction problem similar to Eq. (3.1), but for which the solution is 

symmetric about the centerline, x = ½.  We renormalize the coordinates to place the centerline 
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at x = 0, while the outer boundary remains at x = 1. The governing equation for planar, 

cylindrical and spherical geometry (γ = 0,1,2 respectively) is: 

 1

𝑥𝛾

𝑑

𝑑𝑥
(𝑥𝛾

𝑑𝑦

𝑑𝑥
) + 𝑟(𝑦) = 0 (3.35) 

with  

 𝑑𝑦

𝑑𝑥
|
𝑥=1

+ 𝐵𝑖 𝑦(1) = 0    and    
𝑑𝑦

𝑑𝑥
|
𝑥=0

= 0 (3.36) 

Although, the equations were previously written to allow for a nonlinear source, the examples 

so far are for a linear first order reaction. The source function used for the examples which 

follow is of the form: 

 
𝑟(𝑦) = 𝜑2𝑟̂(𝑦) = 𝜑2

(1 − 𝑦)𝑘

(1 − 𝐾𝑎𝑦)2
 (3.37) 

where we note r̂(0) = 1 as required in the definition of φ. When the denominator term, Ka = 0, 

the equation is identical to Eq. (3.2). When Ka > 0 and k = 1, the source function exhibits some 

interesting nonlinear behavior. For large Ka it is said to be autocatalytic, i.e. the rate increases 

as the reaction proceeds and the conversion, y, increases. Fig. 3.19 shows a graph of the 

nonlinear source functions considered in this section along with the 1st order linear case. 

The dimensionless rate constant, the 

Thiele modulus, can be generalized to 

account for the geometry and source 

function. In all cases, the effectiveness 

factor, η, is unity for small Thiele 

modulus and becomes asymptotic for 

high reaction rates. The asymptotic 

condition corresponds to the case when 

all reactants are consumed, and the 

conversion is unity in the center of the 

particle. The asymptotic condition acts 

like a semi-infinite domain, which can be 

treated analytically (Rawlings and 

Ekerdt, 2015). For the Dirichlet boundary 

conditions all source functions and geometries have the following asymptotic behavior:  

 𝜂 = 1/𝜑∗  as  𝜑∗ → ∞ (3.38) 

when correlated using the generalized parameter, φ*, defined by: 

 

𝜑∗ =  
𝜑

𝛾 + 1
[2∫ 𝑟(𝑦̂)𝑑𝑦

1

0

]

−1
  2

 (3.39) 
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The geometric term, γ + 1, is equivalent to using the ratio of volume to surface area as the 

characteristic length in the definition of φ. For a kth order reaction, Eq. (3.37) with Ka = 0, the 

generalized parameter is: 

 
𝜑∗ = 𝜑

√2(𝑘 + 1)

2(𝛾 + 1)
 (3.40) 

When k = 1 in Eq. (3.37) the generalized parameter is: 

 
𝜑∗ =  

𝜑

𝛾 + 1

𝐾𝑎

√−2[𝐾𝑎 + ln(1 − 𝐾𝑎)]
 (3.41) 

The specific nonlinear source functions considered in this section use Eq. (3.37) with: (1) 2nd 

order, k = 2, Ka = 0; (2) k = 1, Ka = 0.5; and (3) autocatalytic, k = 1, Ka = 0.95.  These functions 

lead to the following values from Eq. (3.39):  (𝛾 + 1)(𝜑∗ 𝜑⁄ ) = 1.2247, 0.8045, 0.4697, 

respectively. The first two cases are mildly nonlinear, while the highly nonlinear third case is 

called autocatalytic because the rate increases initially as reactants are consumed. This type 

of rate relationship can lead to multiple steady state solutions to the problem.  

Orthogonal Collocation 

By using symmetric trial functions, the condition at x = 0 is automatically satisfied. For planar 

geometry, γ = 0, Eq. (3.35) is equivalent to Eq. (3.1) and (3.1b) when the source is not 

dependent on x. The third kind or Robin condition is used at x = 1, since it reduces to a 

Dirichlet condition when Bi goes to infinity. Here we consider nonlinear source functions in 

addition to different geometries. Since the solution is symmetric, the trial functions are 

Lagrange interpolating polynomials in x2, Eq. (2.2), which is repeated here:  

 
𝑦(𝑥) ≈ ∑ 𝑦(𝑥𝑖)ℓ𝑖(𝑥

2)

𝑛+1

𝑖=1

 (3.42) 

Although the application of a Method of Weighted Residuals (MWR) is fundamentally the 

same, the geometry and symmetric trial functions cause some subtle differences to occur.  

Substituting the trial functions, the residual for the problem is: 

 
𝑅(𝑥, 𝒚) =  ∑ 𝑦𝑖

1

𝑥𝛾

𝑑

𝑑𝑥
(𝑥𝛾

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
)

𝑛+1

𝑖=1

+ 𝑟(𝑦(𝑥2)) = 0 (3.43) 

With the collocation method, the residual is set to zero at the interior collocation points, j = 

1,…,n and the boundary condition provides the final equation. The usual recommendation is to 

apply boundary collocation, but from the previous examples (see Fig. 3.12) we found this to be 

the best approach only for Gauss points. A natural boundary condition treatment is better in 

general. Using conventional collocation at interior points and a natural boundary condition 

treatment the equations are: 
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∑ 𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

+ 𝑟(𝑦𝑖) = 0 (3.44) 

at the interior points, i.e. j = 1,…,n and from the boundary condition, following Eq. (3.30): 

 

(𝐵𝑖𝑦𝑛+1 + ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=1

) − 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=1

+ 𝑟(𝑦𝑛+1)) = 0 (3.45) 

Eq. (3.45) reduces to the Dirichlet problem, yn+1 = 0, for large Bi. Otherwise, it sets the 

weighted combination of the residuals to zero. The left term is the boundary condition residual 

and the right one is the boundary weight multiplying the differential equation residual at the 

boundary. This treatment also ensures the method is conservative as discussed in Sec. 3.1.4.  

The following matrix operators are defined as before: 

 
𝐴𝑗𝑖 =

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
|
𝑥𝑗

  and    𝐵𝑗𝑖 =
1

𝑥𝛾

𝑑

𝑑𝑥
[𝑥𝛾

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
]
𝑥𝑗

   

Calculation of these quantities is somewhat different for symmetric problems. For a symmetric 

problem 𝑩 ≠ 𝑨𝑨. The correct calculation procedures are described in section 2.5. 

 A Newton-Raphson procedure works well for a nonlinear rate term. The procedure is outline 

for the Dirichlet problem. The boundary value of y (whether zero or finite) is substituted into Eq. 

(3.44) leaving n nonlinear equations. Given some estimate, y0, a single iteration to determine 

an improved estimate solves for the change as follows: 

 
∑ (𝐵𝑗𝑖 + 𝛿𝑗𝑖

𝑑𝑟

𝑑𝑦
|
𝑦𝑖

0

)

𝑛

𝑖=1

Δ𝑦𝑖 = −∑𝐵𝑗𝑖𝑦𝑖
0

𝑛

𝑖=1

− 𝑟(𝑦𝑗
0) (3.46) 

After solving for the change, an improved estimate is found by adding the change to the 

estimate. To reduce roundoff errors, it is usually better to formulate the iterations as shown, i.e. 

with the residual of the algebraic equation and the change in y. If the reaction is linear, i.e. first 

order or 0th order, the solution is obtained after one Newton iteration. 

B is not symmetric even for the self-adjoint differential operator in Eq. (3.35). However, as 

shown in Sections 3.1.2 and 3.1.3 a minor restructuring of the equations into its weak form 

produces a symmetric matrix problem: 

 
𝛿𝑗,𝑛+1𝐵𝑖 𝑦𝑛+1 + ∑ 𝐶𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

− 𝑊𝑗𝑟(𝑦𝑗) = 0 (3.47) 

where:  
𝐶𝑗𝑖 = 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝑊𝑗𝐵𝑗𝑖 = ∑ 𝑊𝑘𝐴𝑘𝑗𝐴𝑘𝑖

𝑛+1

𝑖=1

 (3.48) 
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When the stiffness matrix, C, is calculated with the left equality in Eq. (3.48) it is clear that Eq. 

(3.47) is equal to Eqs. (3.44) and (3.45) after each row is multiplied by the quadrature weight, 

Wj. The equality on the far right of Eq. (3.48) follows from integration of the Laplacian, B, by 

parts as is done to convert a Galerkin method to weak form, e.g. Eq. (3.23). For a symmetric 

problem, Gaussian and Lobatto quadrature are accurate for degree 2n – 1 and 2n in x2, 

respectively. For the integration by parts, the integrand is a polynomial of degree 2n – 1 in x2, 

so the far right expression is valid for both Gaussian and Lobatto quadrature. It is not valid for 

the Clenshaw-Curtis quadrature used for Chebyshev points. For Chebyshev points, C must be 

calculated using the left equality and the resulting stiffness matrix is not symmetric for n > 2. 

Since orthogonal collocation is known to produce good results when it closely approximates 

the moments or Galerkin methods, we compare it to these methods for this symmetric 

problem. For the Galerkin method, the weight functions are the same as the trial functions in 

Eq. (3.42), so the trial functions and the weight functions are both degree n in x2. The 

integrand for a simple first order source term, k = 1 in Eq. (3.2), is degree 2n, while the second 

order term is degree 2n – 1. Lobatto quadrature is exact for degree 2n, so both a linear source 

term and the second order term are integrated exactly. The method is identical to the Galerkin 

method. 

For the method of moments, weighting the residual by the symmetric Lagrange interpolating 

polynomials through the interior points (like Eq. (3.16)) is equivalent to weighting by monomials 

in x2 or the symmetric or even numbered Legendre polynomials thru degree n - 1 in x2 or thru 

P2n-2. When combined with a linear source term the integrands are 2n – 1 and 2n – 2 degree 

for source and second order terms, respectively. Gaussian quadrature is exact for degree 2n – 

1, so for the linear problem collocation at Gauss points is identical to the method of moments. 

The results for the symmetric problem are like those found for nonsymmetric problems, 

sections 3.1.2 and 3.1.3, i.e. Gauss points yield a good approximation to the method of 

moments, while collocation at Lobatto points approximates the Galerkin method accurately. 

However, for nonsymmetric problems we found that in each case the corresponding 

quadrature formula to be one degree shy of the accuracy needed for exact integration of the 

source terms, even for a linear problem, so this result for symmetric problems is slightly better. 

This analysis provides further explanation for the exact correspondence between moments, 

Galerkin and collocation methods for the problem whose results are shown in Fig. 3.12 with an 

even number of points. 

In order to achieve the accuracy stated above for Gaussian and Lobatto quadrature, the 

geometric parameter, γ, must be considered. Chapter 2 explains how the Jacobi polynomial 

roots and quadrature weights are determined and some examples are shown in Chapters 1 

and 2 (see Figs. 1.6, 2.32 and 2.33). Except for Chebyshev points, the collocation points are 

shifted closer to the boundary for cylindrical and spherical geometry. This result is consistent 

with intuition, since the point density is shifted in the direction of large incremental volume. 
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The justification for the use of Chebyshev points relies more on approximation theory than on 

accurate approximations of integrated MWR. It approximates MWR with the radical,1/√1 − 𝑥2, 

included in the weight or test function. It appears that Chebyshev points are not normally 

altered to better suit the geometry (Trefethan (2000), p. 115; Boyd (2000), p. 380). For our 

purposes, we simply use the right half of the points used for a nonsymmetric problem. Chapter 

2 describes the calculation for the interpolatory quadrature weights for cylindrical and spherical 

coordinates. The second derivative matrix operator, B, is calculated the same way as for other 

points (see Chapter 2) and the stiffness matrix, C, is calculated using the left expression in Eq. 

(3.48).  

Galerkin Method 

For a nonlinear reaction term, orthogonal collocation at Gauss and Lobatto points are only 

approximations of moments and Galerkin methods, respectively. For most nonlinear problems, 

a moments or Galerkin method with exact integration would be difficult to implement. However, 

the results from the variable coefficient problem, see Fig. 3.18, suggest exact integration is 

totally unnecessary. Those results showed that one extra quadrature point was actually better 

than exact integration. An improved approximation of the Galerkin method is developed by 

using a greater number of quadrature base points. As a point of nomenclature, we use the 

names Galerkin and moments, whenever the integrals are more accurately approximated than 

with collocation. A Galerkin approximation with additional quadrature points requires solution of 

the nonlinear algebraic equations:  

 
∫ [ ∑ 𝑦𝑖

1

𝑥𝛾

𝑑

𝑑𝑥
(𝑥𝛾

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
)

𝑛+1

𝑖=1

+ 𝑟(𝑦(𝑥2))]
1

0

ℓ𝑗(𝑥
2)𝑥𝛾𝑑𝑥 

    = 𝛿𝑗,𝑛+1

𝑑𝑦

𝑑𝑥
|
𝑥=1

− ∫ [ ∑ 𝑦𝑖ℓ𝑗
′ℓ𝑖

′

𝑛+1

𝑖=1

− 𝑟(𝑦(𝑥2))ℓ𝑗]
1

0

𝑥𝛾𝑑𝑥 

 ≈ 𝛿𝑗,𝑛+1𝐵𝑖 𝑦𝑛+1 + ∑ 𝐶𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

− ∑ 𝑊𝑘𝑟 (𝑦(𝑥𝑘
2))

𝑚+1

𝑘=1

ℓ𝑗(𝑥𝑘
2) = 0 

(3.49) 

where m > n. To designate the accuracy of the integration, we use the notation e.g. “Galerkin 

+2” to designate quadrature of m = n + 2. There is no need to use more accurate quadrature 

for the second order term, since it is integrated exactly in Eq. (3.47). Only the source term 

needs more accurate integration. Since r is nonlinear, an iterative solution is required. 

Dropping the square on x for convenience, proceed by linearizing the source term about the 

value from an initial guess or previous iteration, denoted by y0: 
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∑ 𝑊𝑘𝑟(𝑦(𝑥𝑘))

𝑚+1

𝑘=1

ℓ𝑗(𝑥𝑘) ≈ ∑ 𝑊𝑘ℓ𝑗(𝑥𝑘) [𝑟(𝑦0(𝑥𝑘)) + (𝑦(𝑥𝑘) − 𝑦0(𝑥𝑘))
𝑑𝑟

𝑑𝑦
|
𝑦0(𝑥𝑘)

]

𝑚+1

𝑘=1

 

      = ∑ 𝑊𝑘ℓ𝑗(𝑥𝑘) 𝑟(𝑦
0(𝑥𝑘))

𝑚+1

𝑘=1

+ ∑ Δ𝑦𝑖 ∑ 𝑊𝑘ℓ𝑗(𝑥𝑘)ℓ𝑖(𝑥𝑘)
𝑑𝑟

𝑑𝑦
|
𝑦0(𝑥𝑘)

𝑚+1

𝑘=1

𝑛+1

𝑖=1

 

= ℎ𝑗
0 − ∑ 𝐷𝑗𝑖

0Δ𝑦𝑖

𝑛+1

𝑖=1

 

(3.50) 

Interpolation is used to calculate values at the interior quadrature points, y(xk), from the values 

at the nodes, yi, e.g. 𝑦(𝑥𝑘) = ∑ ℓ𝑖(𝑥𝑘)𝑦𝑖
𝑛+1
𝑖=1 , k = 1,…,m. D is a mass matrix and in the standard 

parlance, h is called a load vector. The superscript denotes that the values depend on the 

estimated value y0, so for a Newton-Raphson iteration these quantities must be recalculated 

every iteration. The values are updated by solving for the change Δyi 

 
𝛿𝑗,𝑛+1𝐵𝑖 Δ𝑦𝑛+1 + ∑(𝐶𝑗𝑖 + 𝐷𝑗𝑖

0)Δ𝑦𝑖

𝑛+1

𝑖=1

= ℎ𝑗
0 − 𝛿𝑗,𝑛+1𝐵𝑖𝑦𝑛+1

0 − ∑ 𝐶𝑗𝑖𝑦𝑖
0

𝑛+1

𝑖=1

 (3.51) 

The change is then added to the previous estimates.  

It is obvious that the computational complexity increases substantially when moving from 

collocation with n interior quadrature points to a greater number of quadrature points, because 

of the interpolations required. Each iteration, the values of y at the quadrature points are 

calculated by interpolation of the nodal values. Then, the rate is evaluated at the greater 

number of quadrature points. Finally, the mass matrix and load vector are calculated. For 

symmetric problems interpolation of the rate term, Eq. (3.33), is identical to collocation. 

Mildly Nonlinear, Dirichlet B.C., Various Geometry:  

Here we consider Eq. (3.35) with the two mildly nonlinear source functions, Eq. (3.37) with (1) 

2nd order k = 2, Ka = 0 and (2) k = 1, Ka = 0.5. The normalized flux or effectiveness factor, η, 

defined in Eqs. (3.4) and (3.5) is 

again the quantity of primary interest 

from the solution. As described 

above η is unity for small φ and 

asymptotic for large φ. This behavior 

is qualitatively the same for all 

source functions and geometries. 

The asymptotic solution for large φ, 

Eq. (3.39), for these two functions 

gives: (𝛾 + 1)(𝜑∗ 𝜑⁄ ) =

1.2247,0.8045.  

Fig. 3.20 shows the normalized flux 

for a first order source, k = 1, planar 

and spherical geometry, together 
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with numerical solutions for n = 2. The results for an infinite cylinder lie between these two. 

For planar geometry with φ* = 5 the results in Fig. 3.20 correspond to those displayed in Figs. 

3.1 through 3.3. This symmetric treatment with n = 2 corresponds to the nonsymmetric 

treatment with n = 4 in Fig. 3.1. This value of φ* corresponds to the point where the numerical 

results with n = 2 begin to depart from the exact solution.  For smaller values of φ* the results 

agree reasonably well with the analytical solutions, while for larger φ* the asymptotic solution is 

more accurate. For spherical geometry, φ = 3φ*, so the problem is correspondingly more 

difficult and the departures of the numerical results from the analytical solutions occur at lower 

values of φ*. 

Based on the results in Fig. 3.20 one would conclude that Chebyshev points are better, which 

seems to conflict with the results in Fig. 3.3. Closer examination reveals the apparent 

difference is due to the scale of the graphs. For reference, the maximum difference between 

the analytical results for planar and spherical geometry is about 15%. The numerical errors for 

planar geometry at φ* = 5 are not distinguishable from the exact curve in Fig. 3.20. As 

discussed in Section 3.1.1, for φ* = 5 the errors are 0.8, -3.1, and -4.3 percent for Lobatto, 

Chebyshev and Gauss points, respectively.  For small n, the Chebyshev results in Fig. 3.3 are 

the most accurate, but the flux errors are greater than 1 percent and there are significant errors 

in the profiles. However, for a relatively loose error tolerance Chebyshev points are 

characteristically more accurate for these problems, in addition to Fig. 3.3 see Figs. 3.12 and 

3.18. Lobatto points usually overpredict the exact η, while Gauss points usually underpredict it. 

Chebyshev points generally underpredict η at small φ* and overpredict at large φ*. 

Now consider a second order source, k = 2, with Ka = 0. Fig. 3.21 shows calculated profiles for 

spherical geometry, n = 4 and φ* = 5 or 𝜑 = 15√2 3⁄ = 12.247. The errors near the center of 

the sphere are significant for Gauss and Lobatto points. This result is likely because the 

Galerkin and moments methods shift the points away from the center where the volume is 

small and the solution is relatively less important. Chebyshev points are usually not shifted, so 

remain the same regardless of the geometry. 

Integrating with respect to the differential 

volume, r2dr for spheres, is consistent with a 

variational treatment. The collocation points 

correspond to the most accurate quadrature 

formulas over differential volumes. Relative 

to planar geometry, the points are shifted 

away from the center with small differential 

volume. Although there are some excursions 

between the nodes, the errors at the 

collocation points are characteristically 

small. As discussed above, it seems this 
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behavior is likely related to the property of superconvergence, exhibited by some finite element 

methods. 

Despite the errors in the profiles in Fig. 3.21, collocation at Chebyshev points give a flux error 

of 1.5 percent which is virtually the same as the error with Gauss points and twice the error 

given by Lobatto points. Fig. 3.22 shows the flux error as a function of n for this problem and 

the corresponding one with planar geometry. The relative performance of the methods is 

similar to that shown in Figs. 3.3, 3.12 and 3.18. The results suggest that for comparable 

accuracy spherical problems require about 1.6 

to 1.7 times as many points as planar geometry 

when compared for a given accuracy and value 

of φ*. For this nonlinear problem, the errors for 

a given number of points is not substantially 

worse than for the linear first order source 

function. For example, with planar geometry, φ* 

= 5 and n = 2, Lobatto, Chebyshev and Gauss 

points give respectively, flux errors of 0.8, -3.1 

and -4.3 percent for k = 1 and 2.0, -2.1 and -6.0 

percent for k = 2. However, the convergence 

rate is somewhat slower, so the disparity grows 

with n. 

Fig. 3.23 shows the normalized flux 

as a function of φ* for the second 

order source for planar and spherical 

geometry, along with numerical 

results for n = 2. The “exact” 

solution was again computed with 

large n. Comparing with Fig. 3.20, 

the maximum difference between 

the curves for first and second order 

source functions is only about five 

percent, which is one third the 

difference between the curves for 

the two geometries. The numerical 

errors also appear to be qualitatively 

similar. The numerical methods track the exact solution up to the start of the asymptotic 

solution. Since these calculations are for a single catalyst pellet, a full scale chemical reactor 

simulation requires solution of the problem repeatedly at various locations and times in the 

larger system. Using OC with small n in combination with the asymptotic solution is an 

economical method for treating the full system [e.g. Young and Finlayson (1976), Finlayson 

and Young (1979)]. 
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One must be careful about 

generalizing the results for the 2nd 

order source to other nonlinear 

source functions. The second 

nonlinear source function, k = 1, Ka = 

0.5, decreases at a slower rate, so it 

behaves more like a zeroth order 

rate expression, which would be 

constant for all y < 1. A spherical 

problem with φ* = 5 corresponds to 

𝜑 = 18.646. For spherical geometry, 

the profiles are shown in Fig. 3.24 

for n = 5, while the error in the 

normalized flux is displayed versus 

n in Fig. 3.25, and the normalized flux is shown as a function of φ* in Fig. 3.26. For φ* = 5 this 

problem is more difficult than the second order problem, which is apparent from comparison of 

the profiles in Figs. 3.21 and 3.24. In Fig. 3.24 only one node is present in the steep portion of 

the curve. The oscillations are greater than for the second order source, even though an 

additional point is used. However, as with other cases the errors are exceedingly small at the 

collocation points. This result together with the accuracy of the quadrature produces accurate 

values for the normalized flux, η. For the case in Fig. 3.24, the errors in η are only 0.1, 1.5 and 

3.0 percent for Lobatto, Gauss and Chebyshev points, respectively. The numerical results in 

Fig. 3.26 were again calculated with n = 2. In Fig. 3.26 the difference due to geometry is as 

much as 17 percent. Comparing to Figs. 3.20 and 3.23, the values here are as much as 17 

percent greater than for a first order source and 22 percent greater than for the second order 

source.  

These nonlinear problems have also been solved with the Galerkin method. Based on the 

results for the variable coefficient problem, see Fig. 3.18, we anticipate that one or two 
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additional quadrature points may produce some improvement, but more accurate integration 

would be a waste of computing resources. Fig. 3.27 shows the error vs n for the second order 

source and Fig. 3.28 shows the errors for k = 1, Ka = 0.5. For the Galerkin method the integrals 

were evaluated with Lobatto quadrature and m = n + 1, n + 2 and n + 3. The results are 

compared to collocation at Lobatto points, which is equivalent to a Galerkin method with m = 

n. The Galerkin results are labeled “+1” and “+2” in the graphs. The results with one extra 

quadrature point was slightly better than collocation. The improvement with two extra points 

was smaller still. The scatter in the second problem makes the improvement scarcely evident. 

Overall, the improvement with a 

Galerkin method and one extra 

quadrature point is similar to the 

improvement of collocation at 

Lobatto points relative to collocation 

at Gauss points. One additional 

quadrature point, m = n + 1, 

increases the problem complexity 

significantly. Since the quadrature 

points and nodes are no longer the 

same, interpolations are required to evaluate the rates, and then the mass matrix and load 

vector must also be calculated, see Eq. (3.50). In the vast majority of cases, collocation will be 

more efficient than a full Galerkin method, even if one or two extra points are required for 

comparable accuracy. 

Table 3.4 summarizes the errors in Figs. 3.22, 3.25, 3.27 and 3.28. Due to the scatter in some 

of the results, the average errors are shown relative to those of the Galerkin method with m = 

n + 1.  For the four columns the values are geometric averages of the relative error for n ≤ 9, 

16, 19 and 34, respectively for the four columns.  The Galerkin method is generally more 

accurate than collocation at Lobatto points, but the differences are small, and the number of 

additional quadrature points is relatively unimportant. The collocation methods in order of 

accuracy are Lobatto > Gauss > Chebyshev. However, as the problem becomes more difficult, 

the differences are lessened. 

Autocatalytic Source, Third Kind B.C.:  

Eq. (3.35) with the autocatalytic source function, Eq. (3.37) with k = 1, Ka = 0.95, is considered 

here. A third kind boundary conditions is used with Bi = 3, 10 and 100 for comparison.  With the 

largest value of Bi the conditions approach a Dirichlet boundary condition. For a linear source, 

boundary collocation gave poor results compared to use of a natural treatment, Eq. (3.45), see 

Fig. 3.12. Since the geometry causes no fundamental differences in solution procedure, planar 

geometry is used.  The source creates a rate which is essentially negative one order for small 

y and is called autocatalytic. This type of expression is not uncommon and occurs for the 

oxidation of carbon monoxide to carbon dioxide in millions of automotive catalytic converters. 

For this problem, Eq. (3.41) gives φ = 2.129φ*.  

Table 3.4 Relative Average Flux Error 

 Planar Spherical Planar Spherical 

k = 2, Ka = 0 k = 1, Ka = 0.5 

Gauss 17.23 3.00 2.17 1.50 
Chebyshev 169.9 189.8 10.4 10.2 

Lobatto 3.75 3.83 1.22 0.91 
Galerkin +1 1.00 1.00 1.00 1.00 
Galerkin +2 0.97 0.76 0.60 0.73 
Galerkin +3 0.96 0.74 0.67 0.58 
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The nonlinear equations are again solved with a Newton-Raphson method, Eq. (3.46). Using a 

quadratic profile for an initial guess works reasonably well. However, when two solutions exist 

convergence problems can occur if the initial estimate is poor. During the calculations, the 

value of y can exceed the physical limit of 1. In this case it is generally better to use a linear 

extrapolation of the rate for y > 1 rather than setting r = 0. 

An autocatalytic rate expression can lead to multiple steady state solutions.  This is easily 

illustrated by considering the approximation with a single term, n = 1.  The governing 

equations are Eqs. (3.44) and (3.45) or equivalently Eq. (3.47), where for all methods the 

stiffness matrix is of the form: 

 𝐶 = [
𝑐0 −𝑐0

−𝑐0 𝑐0
] (3.52) 

The values of c0 are listed in Table 3.5 along with the quadrature weights. Eq. (3.47) for n = 1 

is: 

 𝑐0(𝑦1 − 𝑦2)  − 𝑊1𝜑
2𝑟̂(𝑦1) = 0 

𝑐0(𝑦2 − 𝑦1) − 𝑊2 𝜑
2𝑟̂(𝑦2) + 𝐵𝑖 𝑦2 = 0 

(3.53) 

r̂(y2) could be approximated by a Maclaurin series, but given the magnitude of Bi = 100, there 

is little error by using r̂(y2) = 1. After using the second equation to eliminate y2, the remaining 

equation is of the form:  

 𝑎
𝑦1

𝜑2
− 𝑏 = 𝑟̂(𝑦1) (3.54) 

Table 3.5 gives the parameters for the 

different approximations, while Fig. 3.29 is 

a graph of Eq. (3.54). The graph 

illustrates that three solutions occur for a 

range of φ. The intermediate solution is 

unstable, while the other two are stable. 

The predicted range of occurrence is 

calculated from the limiting slopes in Fig. 

3.29.  With an accurate approximation, 

multiple solutions occur for 0.71 < φ < 

0.80, so the equation with n = 1 are only 

approximate.  However, considering the 

simplicity of the approximation for this 

Table 3.5 Autocatalytic Reaction Parameters for n = 1 
 

c0 W1 W2 a b φmin φmax 
Error 

φmin 

Error 

φmax 

Gauss 3.0000 1.0000 0.0000 2.9126 0.0000 0.723 0.901 1.8% 12.6% 
Chebyshev 2.3704 0.8889 0.1111 2.6049 0.0029 0.683 0.852 -3.8% 6.4% 

Lobatto 2.0833 0.8333 0.1667 2.4490 0.0041 0.663 0.825 -6.7% 3.2% 
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highly nonlinear problem, the results are good. Also, the graphical solution shown in Fig. 3.29 

is helpful for understanding the multiple solution phenomenon. 

For φ = 0.75, Figs. 3.30 and 3.31 show calculated conversion profiles for several 

approximations together with an accurate profile (n = 12).  As predicted by the simple n = 1 

approximation, there are two stable profiles at this condition.  The lower one is accurately 

approximated with n = 1 or 2, whereas the higher profile requires more terms to achieve an 

accurate solution.  Even though the profile appears to be relatively smooth, keep in mind that 

the second derivative must follow the rate expression plotted in Fig. 3.29. The nonlinearity of 

the rate function makes the problem more difficult for large conversion, y > 0.8.  The low order 

approximations predict nonphysical conversion values greater than unity. However, at the 

collocation points y < 1.  

Fig. 3.32 shows the residual, Eq. (3.43), 

of the upper solution for several 

approximations.  Since for these 

conditions the greatest nonlinearity occurs 

for y > 0.8 or x < 0.4, the residual 

becomes very large and negative near the 

center. These errors contribute to the 

errors observed in Figs. 3.30 and 3.31.   

The normalized boundary flux, η, is 

shown for a range of φ in Figs. 3.33 and 

3.34. The asymptotic solution for Bi → ∞, 

also plotted in Fig. 3.33 tracks the upper 

solution for all φ. The “exact” solution, calculated with large n, is accurate to the scale of the 

graph. It shows the two solutions for 0.71 < φ < 0.80. The lower solution shows convergence to 

within 0.05% for n = 2, in agreement with Fig. 3.30. However, considerably more points are 

required to approximate the upper solution and large φ. For n = 3, Chebyshev and Gauss 

points predict false multiple solutions at large φ = 1.2 – 1.3. The maximum percentage error for 
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the upper solution, φ < 1.4 with Gauss, Chebyshev and Lobatto points, respectively, is 7.6, 6.3 

and 4.8 when n = 4, and 3.3, 2.6 and 2.2 for n = 6.  

Figs. 3.35 and 3.36 show errors in the normalized flux or effectiveness factor as a function of n 

for φ = 0.75 and Bi values of 3 and 100. There are no major differences in accuracy with the 

different points, at least for the upper solution when a natural boundary condition treatment is 

used. Lobatto points produce slightly better results, but the geometric average of the error 

ratios for n < 35 is only about 2 for the three values of Bi considered. This result is different 

from the other problems with a linear or mildly nonlinear source where we found a slower 

convergence rate with Chebyshev points. Compared to the other problems, the number of 

points required to achieve high accuracy is greater for a given value of φ*, especially when you 

consider that this symmetric treatment is equivalent to using twice as many points in a 

nonsymmetric treatment. However, even for this highly nonlinear problem, engineering 

accuracy is achieved with only 5 to 10 points.  

The problem was also solved with the Galerkin method integrated with m = n + 1, n + 2 and n 

+ 3 interior Lobatto quadrature points. These cases are again labeled “+1”, etc., for the flux 
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errors shown in Fig. 3.37. Since 

collocation at Lobatto points is equivalent 

to a Galerkin method with m = n, the 

Lobatto results are shown for comparison. 

The errors are similar, but on average the 

results are slightly better with the Galerkin 

+1 method. Due to the scatter of the 

results in Fig. 3.37, the geometric mean (n 

< 35) of the errors relative to the Galerkin 

+1 are listed in Table 3.6. The table shows 

that on average, collocation at Lobatto 

points is about as accurate as a Galerkin 

method with 2 or 3 additional quadrature 

base points.  

To put these numbers in perspective, each increment of n 

reduces the error by a factor of roughly 2.3, so these differences 

are quite small. Fig 3.35 shows that for the easier lower solution, 

Chebyshev points give a slower convergence rate than the other 

two choices, which is the same behavior observed for the other 

problems tested. However, for the upper solution and for errors 

greater than 10-6, the figures and table show similar results for all 

methods.  

For comparison, both boundary collocation (labeled “bc”) and a natural treatment, Eq. (3.45), 

are included. The results in Fig. 3.12 show that a natural boundary condition treatment is 

significantly better for that problem even for small n, a relatively loose error tolerance, and Bi = 

2 to 50. However, for this problem Figs. 3.35 and 3.36 show that the differences are not as 

dramatic. The accuracy with both approaches is similar for errors larger than 10-4, 10-6 and 10-8 

for Bi of 3, 10 and 100, respectively. For the linear problem and Bi = 5, the value yn+1 = 0.5000, 

while for this problem and Bi = 3 the value yn+1 = 0.4578 indicates the relative amount of 

external resistance is similar in both cases. Most likely, the difference in convergence behavior 

is due to the extreme nonlinearity of the autocatalytic source function.  

To examine the boundary condition treatment, observe that the left parenthesis of Eq. (3.45) 

contains the residual of the boundary condition, while the right parenthesis contains the interior 

residual evaluated at the boundary, i.e. R(1,y) from Eq. (3.43). This treatment sets the 

weighted combination of the two residuals to zero, like Eq. (1.15). The ratio of the two 

residuals is the boundary quadrature weight, Wn+1. For Gauss points, the equation reduces to 

boundary collocation because Wn+1 = 0, while Wn+1 ≈ 1/(2n2) and 1/(4n2) for Lobatto and 

Chebyshev points, respectively. The natural boundary condition treatment drives both 

residuals to zero as the approximation is refined. This result is demonstrated for the linear 

problem in Fig. 3.13. For this highly nonlinear problem, Figs. 3.38 and 3.39 show the behavior 
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Table 3.6 Flux Error 
Relative Average 

Gauss coll. 4.1 
Chebyshev coll. 3.8 
Lobatto coll. 2.0 
Galerkin +1 1.0 
Galerkin +2 2.0 
Galerkin +3 2.3 
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of these residuals for increasing n. Fig. 3.38 plots the boundary condition residual for two 

values of Bi, while Fig. 3.39 shows both the boundary condition residual and R(1,y) for Bi = 3. 

Both residuals go to zero at an exponential rate, but the convergence is somewhat erratic with 

periodic dips and frequent sign changes. This erratic behavior is evident at x = 1 in Fig. 3.32 

but is difficult to see due to the number of curves. The ratio of the two residuals in Fig. 3.39 is 

the quadrature weight, Wn+1. The exponential convergence rate of the residuals overwhelms 

the O(1/n2) change in the quadrature weights, so both residuals appear to converge 

exponentially. 

Apparently, for this problem with large Bi and smaller values of n, the errors due to the 

boundary condition treatment are less important than other errors in the approximation, e.g. 

the residuals in Fig. 3.32 which are largest near the center. For engineering accuracy, the 

boundary condition treatment makes little difference for this problem. This result is quite 

different from the behavior for other problems tested. Even for small n and loose error 

tolerance, other problems exhibit orders of magnitude improvement using the natural boundary 

condition approximation. When you consider the natural treatment is easy to apply, often better 

and never worse, it must be the preferred method. 

It may seem that we are belaboring the point regarding the treatment of flux boundary 

conditions. Texts and articles have continued to recommend boundary collocation [Bert and 

Malik (1996), Bellomo (1997), Trefethen (2000), p. 137; Boyd (2000), p. 111, Peyret (2002), p. 

59], when it was shown to give poor results many years before those writings. Again, this issue 

does not apply to Gauss points because Wn+1 = 0. Although many claim benefits for a nonzero 

boundary weight, it is not an asset when boundary collocation is used. In the OC literature 

Gauss points have become the preferred choice since it avoids this issue altogether.  

Although a natural boundary condition treatment was first suggested more than 40 years ago 

[Young (1977)] and later in some of the spectral literature [Canuto, et al. (1988,2006), Funaro 

(1992), Shen and Tang (2006)], it appears this alternative has not caught on. A stronger case 

for this approach was made in more recent work [Young (2019)]. Apparently, the benefits of a 

natural boundary condition treatment in conjunction with the collocation method are not known 
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to most practitioners. Most PS (pseudospectral) and DQ (differential quadrature) applications 

continue to make the mistake of using boundary collocation with Chebyshev and Lobatto 

points. The problem is easily avoided by using a natural treatment of flux boundary conditions 

instead. If one is dead set on the use of boundary collocation, then Gauss points should be 

used. The problems investigated so far in this monograph have shown improvements in flux 

calculations, but the problem in section 3.2 shows significant improvements in the internal 

profiles also. Chapter 4 on parabolic problems further emphasizes the pitfalls of using 

boundary collocation. 

3.1.6 Relationship to the Tau Method 

Section 1.2.7 of the introduction briefly discusses the relationship between the tau method and 

MWR. The nature of the residual is analyzed here in greater detail. First, consider the residual, 

Eq. (3.8). If the problem is linear with constant coefficients, the residual is a polynomial of 

degree n + 1. For the problem with variable coefficients the cubic variation in Eq. (3.32) causes 

the residual to be a polynomial of degree n + 4. If a symmetric treatment is used, the residual, 

Eq. (3.43), is a polynomial of degree n in x2 for a linear first order source and degree 2n in x2  

for a second order source. For other nonlinear problems with Ka > 0, the residual is not a 

polynomial. 

The profiles in Fig. 3.1 are symmetric and collocation at Gauss points is equivalent to the 

method of moments, while collocation at Lobatto points is the same as the Galerkin method. 

The method of moments makes the residual orthogonal to the first n polynomials, i.e. through 

degree n – 1, so the residuals for the Gauss case shown in Figs. 3.4 and 3.6 are proportional 

to Legendre polynomials P4 and P6, respectively. The Galerkin method makes the residual 

orthogonal to the trial functions. The trial functions represent all polynomials through degree n 

+ 1 with the multiplying factor 1 – x2 to insure they obey essential boundary conditions. The 

Jacobi polynomials with α = β = 1 are orthogonal with respect to this same multiplying factor. 

Since the residual is orthogonal to the first n trial functions (thru degree n – 1), the residuals in 

Figs. 3.4 and 3.6 for the Lobatto case are proportional to 𝑃4
(1,1)

 and 𝑃6
(1,1)

, respectively. 

Collocation at Chebyshev points is equivalent to a Chebyshev-Galerkin method, i.e. with the 

additional weight factor 1 √1 − 𝑥2⁄ , so the residuals for the Chebyshev case are proportional to 

the Chebyshev polynomials 𝑃𝑛
(0.5,0.5)

.  

In addition to the τ coefficients, two residual norms are considered: the L2 norm and a 

weighted Lω norm. These norms are defined by: 

 

𝐿2 = √
∫𝑅2𝑑𝑥

∫𝑑𝑥
 

𝐿𝜔 = √
∫𝑅2𝜔(𝑥)𝑑𝑥

∫𝜔(𝑥)𝑑𝑥
 

(3.55)  
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where ω(x) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 are the weighting functions for the Jacobi polynomials in Eq. 

(2.7) and α = β = 0, ½, and 1 for Gauss or moments, Chebyshev and Lobatto or Galerkin 

methods, respectively. For cylindrical and spherical geometry, the geometric parameters, xγ, 

(on [0,1] domain) would be included in the first integral. Table 2.6 gives examples of 

transforms with the polynomials for symmetric problems. In the second integral, the geometric 

parameter is accounted for by the β parameter of the weight function, see Eq. (2.6) and Table 

2.1. 

The residuals can be represented by an equation like Eq. (1.11): 

 

𝑅(𝑥) = ∑ 𝜏𝑘𝑃𝑘
(𝛼,𝛽)(𝑥)

𝑛2

𝑘=𝑛1

 (3.56)  

Where, as discussed above, n1 = n2  = n for the linear constant coefficient problem, residuals 

in Figs. 3.4 and 3.6. The τ coefficients can be calculated by a Jacobi transform as described in 

section 2.9. Due to the relationships between polynomials, the method of moments will also 

make the residual orthogonal to other Jacobi polynomials of lower degree. For example, due 

Eq. (2.42), the method of moments will make the residual orthogonal to all the 𝑃𝑘
(1,1)

 starting 

two degrees lower. The residuals will also be orthogonal to the 𝑃𝑘
(1,0)

 and 𝑃𝑘
(0,1)

 starting one 

degree lower due to Eqs. (2.83) and (2.88).  

Using the orthogonality of the polynomials, the weighted norm can be calculated by:  

 

𝐿𝜔 = √
1

𝜁0
(𝛼,𝛽)

∑ 𝜏𝑘
2

𝑛2

𝑘=𝑛1

𝜁𝑘

(𝛼,𝛽)
 (3.57)  

Since the weight function, ω(x) = 1 for Legendre polynomials, the two norms are the same. Eq. 

(2.7) shows the polynomial integral terms, 𝜁𝑛
(𝛼,𝛽)

, are O(1/n) for large n, so each successive 

term’s contribution to the weighted norm declines at a slightly faster rate than given by the τ 

coefficient values. 

Table 3.7 lists the τ coefficients and the L2 and Lω residual norms for the first order problem 

with constant coefficients. For consistency, the results are reported for the domain [-1,1] rather 

than [0,1]. Also, rather than using the traditional Chebyshev scaling, the Chebyshev 

polynomials are normalized like the other Jacobi polynomials, Eqs. (2.7) and (2.11). Since the 

polynomials are different for each case, the τ coefficients and Lω columns cannot be directly 

Table 3.7 Residual Properties, 1st Order Constant Coefficients 

 Gauss/Moments Chebyshev Lobatto/Galerkin 

n τ L2 = Lω τ L2 Lω τ L2 Lω 

4 8.4232 2.8077 4.1180 2.7097 2.0199 2.2514 2.9066 1.5179 

6 1.4184 0.3934 0.7099 0.4159 0.2953 0.3810 0.5041 0.2254 

8 0.1428 0.0346 0.0723 0.0387 0.0265 0.0386 0.0518 0.0206 
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compared for the different methods. The L2 norms can be compared. The Galerkin method has 

the largest values for this norm even though it has the smallest solution errors, see Figs. 3.2 

and 3.3.  

For the linear variable coefficient problem, Fig. 3.18 shows the flux errors for all of the 

approximations considered. For the Galerkin and moments approximations, see Figs. 3.15 and 

3.16, n1 = n and n2  = n + 4. For this problem collocation is only an approximation of the 

Galerkin and moments methods because the quadrature is not accurate enough for an exact 

correspondence. Two additional quadrature points are required for exact integration. However, 

with collocation the quadrature is accurate enough to make the residual orthogonal to 

polynomials of lower degree such that n1 = n - 4. Table 3.3 shows the most accurate results 

were achieved when one additional quadrature point was used. In that case, n1 = n - 2. The 

other option considered for this problem was to interpolate the coefficients into the trial space, 

for which n1 = n - 4. To designate the accuracy of the integration, we use the notation, e.g. 

“+1” to indicate one additional quadrature point, i.e. m = n + 1 in Eq. (3.49).  

For the variable coefficient problem, Fig 3.40 shows the absolute value of coefficients when n 

= 6 for collocation at Lobatto points, the Galerkin method with exact integration, and other 

approximate Galerkin methods. A graph like this for Gauss points and moments methods looks 

remarkably similar. The coefficients for the first two terms are identically zero in all cases as 

well as those for n > n2 = 10. The coefficients for each degree are similar. Only the 5th or n – 1 

degree term is significantly different for the collocation method. This term is identically zero for 

the Galerkin method and small for the other approximations. The nth term is the largest, while 

the n + 1 degree terms are the only others within an order of magnitude of the largest one. 

Flux errors for the nonlinear second order rate expression are shown in Fig. 3.27. The 

coefficients for it look qualitatively like those in Fig. 3.40. Only the coefficients for n and n + 1 

terms (2n and 2n + 2 degree) have significant magnitude when the Galerkin method is 

approximated with at least one extra quadrature point. The coefficient for the n – 1 term (2n – 
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2 degree) is also significant for the collocation method. Fig. 3.41 shows the evolution of the 

coefficients for the second order rate expression approximated with Galerkin methods n = 2 to 

6 using m = n + 1 interior quadrature points. The logarithmic scale shows the coefficients fall 

off exponentially from a maximum at 2n. An exact Galerkin method would make the 2n – 2 

term zero. For this approximate integration, those terms are not zero, but they are nearly three 

orders of magnitude smaller than the 2n degree term, so they contribute little to the residual 

norm.  

The other nonlinear rate expression, k = 1, Ka = 0.5, makes for a more difficult problem when 

φ* = 5. The flux errors are plotted in Fig. 3.28. In this case, the residual is not a polynomial. 

Fig. 3.42 shows the τ coefficients for various Galerkin approximations with n = 8. In this case 

the residual is more highly populated with significant coefficients. The largest coefficients are 
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again at 2n and 2n + 2 (16 and 18 degree). The 2n + 4 (20 degree) term is also significant, but 

the higher terms are smaller than the largest by at least an order of magnitude. In this case the 

collocation method also has significant values at 2n – 2 and 2n – 4 (12 and 14). The effect of 

the additional quadrature points on the coefficients below 2n is readily apparent. Results for 

the autocatalytic reaction, k = 1, Ka = 0.95, are like those in Fig. 3.42, showing a larger array of 

significant coefficients. 

These calculations do not answer the question – why does only one extra quadrature point 

often produce smaller errors than a more accurate integral approximation with a larger number 

of quadrature points? This effect has been observed with finite element methods. Strang and 

Fix (1973) offer the less than satisfactory explanation that exact integration makes the problem 

“too stiff”. The differences due to quadrature accuracy are relatively small, so this question is 

just a curiosity and not of primary importance. However, keep in mind that the absolute value 

of the coefficients are plotted in the figures above. The value of the Lω norm does not depend 

on the sign of the coefficients. However, we have observed differences between error norms 

and flux errors. The modal solutions in the next section provide some insight into the nature of 

flux errors. 

It is obvious from these calculations that the MWR methods could be viewed as τ methods, 

since the residuals can be represented by Eq. (1.11) or (3.56). The Galerkin method, α = β = 1, 

has been emphasized in these calculations, but the same relationships apply to the method of 

moments, α = β = 0. The relationships also apply to Chebyshev versions of the Galerkin 

method and method of moments with additional weighting by the radical 1 √1 − 𝑥2⁄ , so that α = 

β = +½ and -½, respectively. Even orthogonal collocation methods obey the equation, since 

they are MWR methods with integrals approximated with quadratures. For each method, the 

residual is orthogonal to a different type of orthogonal polynomial. As a result, the distribution 

of the residual errors is different as shown in Fig. 2.2. Larger values of α and β reduce the 

residual away from the boundary at the expense of values near the boundary. The Galerkin 

method, α = β = 1, uses the largest values considered. It deemphasizes the boundary area, so 

does not produce the smallest residuals, but at least for this problem, it gives the most 

accurate solutions. At a boundary, the solution is tied to the boundary condition, so a reduced 

weighting near the boundary makes sense intuitively. 

Many texts emphasize the importance of using orthogonal polynomial trial functions, whereas 

the emphasis should be placed on the weight or test functions, i.e. the type of polynomials the 

residual is made orthogonal to. It is easy to prove that the form of the trial functions - nodal, 

modal or monomial - makes no difference, apart from possibly rounding errors. So far, all the 

examples have been solved using nodal trial functions, while the following sections solves a 

few problems with modal trial functions. Although the form of the trial functions is not of primary 

importance, the residual orthogonality is very important. The orthogonality of the residuals is at 

the heart of the different MWR. This section highlights these differences and illustrates their 

influence on the residual errors. 
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3.1.7 Orthogonal Polynomial - Modal Trial Functions 

 The choice of trial functions is discussed in Section 1.1 and the justification for using Lagrange 

interpolating polynomials rather than modal methods is given there. For problems of interest, 

interpolating polynomials rather than orthogonal polynomials are usually the best choice. For 

completeness, a couple of examples are considered here using orthogonal polynomial trial 

functions (modal methods) to give the reader a flavor of the differences between the two 

approaches.  

The problem of diffusion with a linear source and Dirichlet boundary conditions, Eqs. (3.1) with 

(3.1a) and (3.2), is considered with constant and variable coefficients. We do not consider 

Chebyshev polynomials here, but their use is well documented in the references (e.g. Shen, et 

al. (2011)). For convenience, the domain [-1,1] is used. The factor of 4 used in the rate function 

is not required for the same problem with this larger domain. 

We wish to use Legendre polynomials as trial functions, so the solution is approximated by Eq. 

(1.2), duplicated here: 

 
𝑦̃ = ∑ 𝑃𝑘(𝑥)

𝑛+1

𝑘=0

𝑎̂𝑘 (3.58) 

where n corresponds to the number of interior points in a nodal method. The method is called 

a modal method, because the unknown coefficients, 𝒂̂, are equivalent to the modes in a 

Fourier series. 

 As discussed in section 2.1, the even numbered polynomials are even functions of x, i.e. 

symmetric about x = 0, while the odd numbered ones are odd. If the problem is symmetric like 

those considered in section 3.1.5, only even number polynomials would be used in the 

approximation, Eq. (3.58). The first few Legendre polynomials are given in Eq. (2.26) while the 

others can be built up using the three term recurrence relations discussed in section 2.1. 

These polynomials are orthogonal on the interval [-1,1] with a weight function of unity. They 

correspond to a Jacobi polynomial with α = β = 0. There are several ways one could treat the 

boundary conditions. 

 𝑦(±1) = 0  

One method is to add constraint equations to explicitly enforce them, while another method is 

to select combinations of the orthogonal polynomials which will meet the boundary conditions 

[Boyd (2000)].  Shen, et al. (2011) describe this later approach for a general boundary 

condition, including 1st, 2nd and 3rd type as special cases. That approach is used here for this 

simple problem. Legendre polynomials are normalized so the boundary values are: 

 𝑃𝑘(1) = 1   and   𝑃𝑘(−1) = (−1)𝑘  

Since the polynomials are alternately odd and even about x = 0, the simplest method to meet 

the boundary conditions is to subtract P0 =1 from the even numbered polynomials in Eq. (3.58)  



[168] 

 

and subtract P1 = x from the odd numbered ones. A better matrix structure is achieved if Eq. 

(3.58) is modified to:  

 

𝑦̃ = ∑(𝑃𝑘(𝑥) − 𝑃𝑘+2(𝑥))

𝑛−1

𝑘=0

𝑎𝑘 = ∑ 𝜓𝑘(𝑥)

𝑛−1

𝑘=0

𝑎𝑘 (3.59) 

If the problem is symmetric, only the even numbered polynomials are used, so the trial solution 

is:  

 

𝑦̃ = ∑(𝑃2𝑘(𝑥) − 𝑃2𝑘+2(𝑥))

𝑛−1

𝑘=0

𝑎𝑘 = ∑ 𝜓𝑘(𝑥)

𝑛−1

𝑘=0

𝑎𝑘 (3.60) 

Villadsen and Michelsen (1978) considered this problem for a symmetric solution in cylindrical 

geometry. They expanded the solution in terms of Jacobi polynomials. A similar approach for 

this geometry would use Jacobi polynomials with α = β = 1, and a multiplier of (1 – x2) enforces 

the boundary conditions. These trial functions are equivalent to those in Eq. (3.59), since Eq. 

(2.42) is the identity:  

 
(1 − 𝑥2)𝑃𝑘

(1,1)(𝑥) =
2𝑘 + 2

2𝑘 + 3
(𝑃𝑘(𝑥) − 𝑃𝑘+2(𝑥)) (3.61) 

Here we follow the same convention used in Chapter 2. A superscript is used to designate the 

α and β of a Jacobi polynomial, e.g. (1,1) designates α = β = 1, while no superscript indicates a 

Legendre polynomial, α = β = 0.  

Given the trial functions, ψ, the residual of Eq. (3.1) with first order source and constant 

coefficients is: 

 

𝑅(𝑥, 𝒂) = ∑[𝜓𝑘
′′(𝑥) − 𝜑2𝜓𝑘]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 (3.62) 

Substituting the trial functions, Eq. (3.59), and then Eq. (2.45) for the second derivative, the 

residual is: 

 
𝑅(𝑥, 𝒂) = ∑[𝑃2𝑘

′′ − 𝑃2𝑘+2
′′ − 𝜑2(𝑃2𝑘 − 𝑃2𝑘+2)]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 

= − ∑ [∑𝑆𝑘ℓ𝑃2ℓ

𝑘

ℓ=0

+ 𝜑2(𝑃2𝑘 − 𝑃2𝑘+2)] 𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 

(3.63) 

where S is constructed from Eq. (2.45), 𝑆𝑘ℓ = (4𝑘 + 3)(4ℓ + 1).  

With collocation the residual, Eq. (3.63), is set to zero at n interior collocation points. The 

resulting problem is a full n x n matrix problem. Solution of the matrix problem produces 

coefficients, 𝑎𝑘, which give exactly the same nodal values as the nodal solutions in Section 
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3.1.1. The effort required to solve the problem is like that of a nodal formulation. It turns out 

though, that if an integrated MWR is applied, simplifications sometimes occur.  

Method of Moments 

Section 1.2.4 briefly described the method of moments and Section 3.1.1 developed a nodal 

formulation for the problem considered here. Now we wish to use the trial functions in Eq. 

(3.59) rather than interpolating polynomials.  The weight functions with the method of moments 

are nominally the monomial powers of x. However, as explained in sections 1.2.4 and 3.1.1 

any linearly independent set of polynomials which contains the monomials is equivalent. 

Sections 1.2.7 and 3.1.6 show the equivalence of the method of moments and the Legendre-

tau method. The only difference is that here the trial functions have been constructed to meet 

the boundary conditions, while with the spectral-tau method side conditions are normally used 

to enforce the boundary conditions. The end result is the same, but the construction here 

produces a better matrix structure. 

 

For a problem with symmetry, the natural choice of weight functions for a modal method are 

the even numbered Legendre polynomials: 

 

∫ {∑ [∑𝑆𝑗ℓ𝑃2ℓ

𝑗

ℓ=0

+ 𝜑2(𝑃2𝑗 − 𝑃2𝑗+2)] 𝑎𝑗

𝑛−1

𝑗=0

− 𝜑2}𝑃2𝑖(𝑥)𝑑𝑥
1

−1

 

= ∑[(4𝑗 + 3)(4𝑖 + 1) + 𝜑2(𝛿𝑖𝑗 − 𝛿𝑖,𝑗+1)]𝜁2𝑖𝑎𝑗 − 𝜁0𝜑
2𝛿𝑖0 = 0

𝑛−1

𝑗=0

 

(3.64) 

i = 0,…,n - 1. Eq. (3.64) may be written in matrix notation as: 

 [𝑪 + 𝜑2𝑫]𝒂 = 𝜑2𝒉 (3.65) 

We identify C and D as the stiffness and mass matrices, respectively, and h as the load vector. 

Substituting the values of ζ from Eq. (2.7), the approximation is: 

 

𝐶𝑖𝑗 = 𝜁2𝑖(4𝑗 + 3)(4𝑖 + 1) =  2(4𝑗 + 3)  for 𝑗 ≥ 𝑖 

𝐷𝑖𝑗 =
2

4𝑖 + 1
(𝛿𝑖𝑗 − 𝛿𝑖,𝑗+1) 

ℎ𝑖 = 2𝛿0𝑖 

 

The common factor of 2 can also be eliminated. The stiffness matrix, C, is then upper 

triangular, while the mass matrix, D, consists of a diagonal and one subdiagonal. The load 

vector, h, is integrated by substituting P0 = 1 and only the first row has a nonzero value. The 

first 6 rows of the matrices are: 

 

𝑫 = 

(

 
 
 

1 0 0 0 0 0
−1 5⁄ 1 5⁄ 0 0 0 0

0 −1 9⁄ 1 9⁄ 0 0 0
0 0 −1 13⁄ 1 13⁄ 0 0
0 0 0 −1 17⁄ 1 17⁄ 0
0 0 0 0 −1 21⁄ 1 21⁄ )
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𝑪 =  

(

  
 

3 7 11 15 19 23
0 7 11 15 19 23
0 0 11 15 19 23
0 0 0 15 19 23
0 0 0 0 19 23
0 0 0 0 0 23)

  
 

  

When combined the matrix is upper triangular except for the addition of the subdiagonal from 

the mass matrix. The matrix problem can be solved more efficiently than a full matrix, since 

only the subdiagonal needs to be eliminated and back substitution is simpler due to the 

common coefficients. Some sample solutions with φ = 5, are: 

 𝑎 = {0.892857}   for 𝑛 = 1 

𝑎 = {0.808625,0.336927}   for 𝑛 = 2 

𝑎 = {0.800214,0.281414, 0.056737}   for 𝑛 = 3 

𝑎 = {0.800020,0.280131, 0.050260,0.005711,0}   for 𝑛 = 4 

 

When Eq. (3.59) is evaluated at the Gauss points with these coefficients for n = 2, the values 

are identical to those found in Fig. 3.1 of Section 3.1.1 with an even number of Gauss points 

(which is equivalent to moments). The rapid decay of the coefficient values and the rapid 

convergence of the lower order coefficients, indicates the fast convergence of the solution with 

increasing n. This convergence behavior has important consequences for the accuracy of the 

boundary flux, Eq. (3.4).  

Integration of the approximate solution, Eq. (3.59), gives the normalized flux: 

 
𝜂 =

1

2
∫ (1 − 𝑦)𝑑𝑥 = 1

1

−1

−
1

2
 ∑ 𝑎𝑘 ∫ (𝑃2𝑘(𝑥) − 𝑃2𝑘+2(𝑥))𝑑𝑥

1

−1

𝑛−1

𝑘=0

= 1 − 𝑎0 (3.66) 

The analytical solution, Eq. (3.6), gives the exact value 𝜂 = tanh (𝜑) 𝜑⁄  or a0 = 0.800018 for φ 

= 5. Normally, the derivatives of an approximate solution converge slower than the solution 

itself. However, the boundary flux is a special case, since integration can be used as explained 

in the discussion of Eq. (3.5). When solved with the moments method the boundary flux 

converges more quickly than the overall solution. This behavior is clearly demonstrated by 

comparison of the L2 error norms and flux errors, see Figs. 3.2 and 3.3. 

Galerkin Method 

Now consider the solution of this problem with the trial functions, Eq. (3.59), giving the same 

residual, Eq. (3.62). However, with weighting by the trial functions, the weighted residual is 

modified to: 

 ∫ 𝑅(𝑥, 𝒂)(𝑃2𝑖 − 𝑃2𝑖+2)𝑑𝑥
1

−1

= 0 (3.67) 

By comparing Eqs. (3.64) and (3.67), a simple relationship between the Galerkin and moments 

approximations is apparent. Both the mass matrix and stiffness matrix are related as follows: 
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 𝐶𝑖𝑗
𝐺 = 𝐶𝑖𝑗

𝑀 − 𝐶𝑖+1,𝑗
𝑀  (3.68) 

where the superscripts, G and M, indicate the matrices for the Galerkin and moments methods, 

respectively. The resulting matrices for a six term approximation are: 

 

𝑫𝑮 = 

(

 
 
 
 

6 5⁄ −1/5 0 0 0 0

−1/5 14 45⁄ −1/9 0 0 0

0 −1/9 22 117⁄ −1/11 0 0

0 0 −1/11 30 221⁄ −1/15 0

0 0 0 −1/15 38 357⁄ −1/19

0 0 0 0 −1/19 46 525⁄ )

 
 
 
 

  

 

𝑪𝑮 = 

(

  
 

3 0 0 0 0 0
0 7 0 0 0 0
0 0 11 0 0 0
0 0 0 15 0 0
0 0 0 0 19 0
0 0 0 0 0 23)

  
 

  

Compared to the moments method, these modifications produce a matrix problem which can 

be solved more efficiently, especially for large n. The stiffness matrix is diagonal, while the 

mass matrix is tridiagonal.  

One nice feature of the modal formulation is that it is easier to calculate the solution for 

different n in order to monitor the convergence. The matrices can be calculated for the 

maximum n of interest, which gives the matrices for smaller n as just the upper left submatrix 

of the larger matrix.  For example, the solution for n = 3 can be obtained by using the upper 

left 3x3 submatrix of the larger matrix. For a nodal formulation, the matrix problem is different 

for each n, so monitoring convergence requires the calculation of a new matrix for each n of 

interest.  

Some example solutions for φ = 5, are: 

 𝑎 = {0.757576}   for 𝑛 = 1 

𝑎 = {0.798511,0.270173}   for 𝑛 = 2 

𝑎 = {0.799998,0.279987, 0.049535}   for 𝑛 = 3 

𝑎 = {0.800018,0.280119, 0.050201,0.005249}   for 𝑛 = 4 

 

When Eq. (3.59) is evaluated at the Lobatto points with these coefficients for n = 2, the values 

are identical to those found in Fig. 3.1 of section 3.1.1, since collocation at Lobatto points is 

equivalent to the Galerkin method. 

The convergence rate of these coefficients is somewhat better than that for the moments 

method, so the comments above regarding the accuracy of flux calculations apply equally to 

the Galerkin method. 

The equations for the method of moments and Galerkin method can be solved with φ as a free 

parameter. For the method of moments, the first four approximations are:  
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𝜂 =

3

𝜑2 + 3
   for 𝑛 = 1 

𝜂 =
10𝜑2 + 105

𝜑4 + 45𝜑2 + 105
   for 𝑛 = 2 

𝜂 =  
21𝜑4 + 1260𝜑2 + 10395

𝜑6 + 210𝜑4 + 4725𝜑2 + 10395
  for 𝑛 = 3 

𝜂 =
36𝜑6 + 6930𝜑4 + 270270𝜑2 + 2027025

𝜑8 + 630𝜑6 + 51975𝜑4 + 945945𝜑2 + 2027025
   for 𝑛 = 4 

 

The first four Galerkin approximations are: 

 
𝜂 =

𝜑2 + 15

6𝜑2 + 15
   for 𝑛 = 1 

𝜂 =
𝜑4 + 105𝜑2 + 945

15𝜑4 + 420𝜑2 + 945
   for 𝑛 = 2 

𝜂 =  
𝜑6 + 378𝜑4 + 17325𝜑2 + 135135

28𝜑6 + 3150𝜑4 + 62370𝜑2 + 135135
  for 𝑛 = 3 

𝜂 =
𝜑8 + 990𝜑6 + 135135𝜑4 + 4729725𝜑2 + 34459425

45𝜑8 + 13860𝜑6 + 945945𝜑4 + 16216200𝜑2 + 34459425
   for 𝑛 = 4 

 

The relationships for n = 2 reproduce the results plotted in Fig. 3.20. These expressions agree 

with the behavior in Fig 3.20. i.e. for moments lim
𝜑 → ∞

𝜂 ∝ 𝜑−2, while for the Galerkin method  

lim
𝜑 → ∞

𝜂 ∝ 1. 

The Padé approximant is the “best” approximation of a function by a rational function of a 

given order. These solutions are identical to Padé approximations calculated directly from the 

analytical solution 𝜂 = tanh (𝜑) 𝜑⁄  to the same order in the numerator and denominator. 

Compared to the method of moments, the solutions for the Galerkin method have one 

additional term in the numerator. The extra order in the numerator is the reason it produces 

slightly better results.  

These results remind one of Lanczos’ (1956) motivation for developing the tau method and 

method of selected points (collocation). His interest was in developing approximations to 

various functions. These calculations could be used as a somewhat roundabout procedure for 

developing accurate approximations to the hyperbolic tangent function. The Galerkin 

approximation for n = 4 is accurate to within 0.1% for φ < 11. 

Variable Coefficients 

The banded matrix structure given by the Galerkin method above and even the near upper 

triangular matrix produced by the moments method can be solved more efficiently than the full 

matrix problems produced by the nodal approximations resulting from Lagrange interpolating 

polynomials. Unfortunately, these efficient matrix structures are lost if the problem is nonlinear 
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or even if it has variable coefficients. To demonstrate this property, consider the variable 

coefficient problem with source function in Eq. (3.32), which is linear in y, but cubic in x. The 

cubic function q(x) varies from 0.2 to 1.8, but with an average value of unity (note the factor of 

4 is dropped from the equation because the domain here is [-1,1]). To facilitate solution of the 

problem, the variable coefficient is expressed as a function of Legendre polynomials. One way 

to determine these coefficients is through a discrete Legendre transform as described in 

section 2.9. The result is: 

 𝑞(𝑥) = 𝑃0 + 0.96𝑃1 − 0.16𝑃3  

In this form it is clear from the properties of Legendre polynomials that the average value is 

unity and the values at the two boundaries are as stated above. 

Eq. (3.65) still applies for this problem. The stiffness matrices are the same as before, but 

since the problem is no longer symmetric, the rows and columns associated with the odd 

numbered polynomials must be included. So, the stiffness matrix for the method of moments 

is: 

 

𝑪 =  

(

  
 

6 0 14 0 22 0
0 10 0 18 0 26
0 0 14 0 22 0
0 0 0 18 0 26
0 0 0 0 22 0
0 0 0 0 0 26)

  
 

 

The mass matrix and load vector change due to the cubic coefficient. For the method of 

moments, these quantities are: 

 

𝐷𝑖𝑗 = ∫ 𝑃𝑖(𝑥) 𝜓𝑗(𝑥) 𝑞(𝑥) 𝑑𝑥
1

−1

= ∫ 𝑃𝑖(𝑥) (𝑃𝑗(𝑥) − 𝑃𝑗+2(𝑥))  𝑞(𝑥) 𝑑𝑥
1

−1

 

ℎ𝑖 = ∫ 𝑃𝑖(𝑥) 𝑞(𝑥) 𝑑𝑥
1

−1

 

 

The load vector can easily be integrated analytically when q is expressed in terms of the 

Legendre polynomials. Integration of the mass matrix analytically is more complicated. One 

possibility is to interpolate the product of q and ψ as a discrete Legendre series and then 

integrate. It is probably simpler just to use numerical quadrature to integrate the expressions 

as was done when this problem was solved by nodal methods. Sections 3.1.3 and 3.1.4 the 

degree of the mass matrix integrand. Exact integration for the Galerkin method is obtained 

using Lobatto quadrature with n + 2 interior points. For the method of moments n + 2 interior 

points is needed for Gaussian quadrature or n + 1 for Lobatto quadrature. 

Exact integration of the Galerkin mass matrix and load vector gives: 
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𝐷𝐺 =

[
 
 
 
 
 

2.4000 0.6095 −0.4000 −0.2119 0 0.0139
0.6095 0.9524 0.2101 −0.2857 −0.1446 0

−0.4000 0.2101 0.6222 0.1432 −0.2222 −0.1131
−0.2119 −0.2857 0.1432 0.4675 0.1090 −0.1818

0 −0.1446 −0.2222  0.1090  0.3761  0.0884
0.0139 0 −0.1131 −0.1818  0.0884  0.3152]

 
 
 
 
 

  and   ℎ𝐺

=

[
 
 
 
 
 

2.0000
0.6857

0
 −0.0457

0
0 ]

 
 
 
 
 

 

Except for a couple of zeros, this matrix is full, so the beneficial matrix structure found for the 

constant coefficient problem is lost. A full matrix also results when the source is nonlinear. 

Solving a nonlinear problem is further complicated by the indirect dependence of the 

dependent variable, y, on the unknown coefficients, a. Nonlinear problems are much easier to 

solve with a nodal method, and as found in section 3.1.5, collocation is much simpler than the 

Galerkin or moments methods. 

Some examples of solutions using the method of moments with φ = 5 are: 

 𝑎 = {0.780464, 0.139001, 0.290515, 0.136558}   for 𝑛 = 4 

𝑎 = {0.765444, 0.154772, 0.232674, 0.105690, 0.061149, 0.026173}  for 𝑛 = 6 
 

Some solutions with the Galerkin method are: 

 𝑎 = {0.764431, 0.151352, 0.218663, 0.107983}   for 𝑛 = 4 

𝑎 = {0.765254, 0.154036, 0.229734, 0.106528, 0.047540, 0.022546}  for 𝑛 = 6 
 

These solutions are identical to those found for the nodal moments and Galerkin methods 

shown in Figs. 3.15 and 3.16 and Table 3.2 when converted to a common basis.  

Methods to convert between modal and nodal representations are discussed in section 2.9. To 

demonstrate the conversion, consider the Galerkin solution of the variable coefficient problem 

with n = 4. The values at the Lobatto points are illustrated in Fig. 3.16. These values can be 

compared by using the coefficients above to evaluate Eq. (3.59) at the Lobatto points. The 

result is: 

 𝑦 =  {0, 0.46603,  0.92731,  0.97087,  0.79069, 0 }  

which is identical to the results found using the nodal formulation.  

Suppose we had not solved the problem with the modal formulation but want to know the 

modal coefficients. In that case, a Legendre transformation matrix, discussed in section 2.9, 

can be used to calculate the coefficients from the nodal values by 𝒂̂ = 𝑸𝒚. The result of the 

calculation is the coefficients of Eq. (3.58), which are: 

  𝑎̂  =  { 0.76443, 0.15135,−0.54577,−0.04337,−0.21866,−0.10798 }  

These coefficients can be determined from those above (for Eq. (3.59)), by collecting like 

terms.  
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If we have a modal approximation, Eq. (3.65), but want to calculate the nodal values directly, 

we could do so by substitution of the appropriate transform: 

 [𝑪 + 𝜑2𝑫]𝑸𝒚 = 𝜑2𝒉 (3.69) 

In this case, since the coefficients are for the difference, Pn – Pn+2, the appropriate transform 

would be like the intermediate one, Eq. (2.144). 

The point of this discussion is that the solution is exactly the same, but there are different ways 

to represent it. Using one form of trial function or another does not change the solution, though 

some texts seem to suggest that it does. 
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3.2 Chemical Reactor with Axial Dispersion 

For the next example of a boundary value problem, consider nonisothermal flow through a 

chemical reactor with axial conduction and dispersion.  This is a coupled heat and mass 

transfer problem. The governing equations for the problem are: 

 

1

𝑃𝑒𝑚

𝑑2𝑦

𝑑𝑧2
−

𝑑𝑦

𝑑𝑧
+ 𝑟𝑚(𝑦, 𝑇) = 0   and 

1

𝑃𝑒𝑡

𝑑2𝑇

𝑑𝑧2
−

𝑑𝑇

𝑑𝑧
− 𝑈𝑇 + 𝑟𝑡(𝑦, 𝑇) = 0 

(3.70) 

with: 

 

𝑑𝑦

𝑑𝑧
= 𝑃𝑒𝑚𝑦    and   

𝑑𝑇

𝑑𝑧
= (𝑃𝑒𝑡 + 𝑈)𝑇   at 𝑧 = 0 and 

𝑑𝑦

𝑑𝑧
= 0   and  

𝑑𝑇

𝑑𝑧
+ 𝑈𝑇 = 0   𝑎𝑡 𝑧 = 1 

 

The model allows for cooling or heating at the wall using a lumped parameter approximation 

with an overall heat transfer coefficient, parameter U.  These problems are convection 

dominated, since the Peclet numbers, Pem and Pet, are normally large. The solution is 

nonsymmetric and all the boundary conditions are of the second or third kind.  Models with 

heating and cooling often fail to account for this effect in the boundary conditions. The 

boundary conditions were correctly treated by Young and Finlayson (1973). 

 In an industrial reactor model several component balances could be required to represent a 

system of reactions, so Eq. (3.70) is formulated as the following system of coupled equations: 

 
1

𝑃𝑒𝑘

𝑑2𝑦𝑘

𝑑𝑧2
−

𝑑𝑦𝑘

𝑑𝑧
− 𝑈𝑘𝑦𝑘 + 𝑟𝑘(𝒚) = 0    (3.71) 

with 

 
𝑑𝑦𝑘

𝑑𝑧
= (𝑃𝑒𝑘 + 𝑈𝑘)𝑦𝑘    at 𝑧 = 0   and  

𝑑𝑦𝑘

𝑑𝑧
+ 𝑈𝑘𝑦𝑘 = 0   𝑎𝑡 𝑧 = 1  

for k = 0,…,nm. We assign k = 0 to the energy balance which is combined with as many mass 

balances as required to represent the reaction system of interest. 

After the application of conventional orthogonal collocation, Eq. (3.71) is approximated by: 

 
∑ (

1

𝑃𝑒𝑘
𝐵𝑗𝑖 − 𝐴𝑗𝑖 − 𝑈𝑘𝛿𝑗𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚𝑗) = 0 (3.72) 

for j = 1,…,n, and using boundary collocation as recommended by most authors: 
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∑[𝐴0,𝑖 − (𝑃𝑒𝑘 + 𝑈𝑘)𝛿𝑜,𝑖]

𝑛+1

𝑖=0

𝑦𝑖𝑘 = 0   and  

∑[𝐴𝑛+1,𝑖 + 𝑈𝑘𝛿𝑛+1,𝑖]

𝑛+1

𝑖=0

𝑦𝑖𝑘 = 0 

(3.72a) 

where 𝑦𝑖𝑘 = [𝑇(𝑧𝑖), 𝑦1(𝑧𝑖),… , 𝑦𝑛𝑚
(𝑧𝑖)] and yj is the vector of all values evaluated at point zj. 

Based on the results for the previous example, we anticipate that boundary collocation, Eq. 

(3.72a), will work well for Gauss points but not so well for Lobatto or Chebyshev points.  

A natural treatment of the boundary conditions works better for Lobatto and Chebyshev points. 

It is the standard method for treating flux boundary conditions with Galerkin methods and it 

falls out when the equations are cast in weak form. The weak form of the Galerkin method is 

derived by integrating the Laplacian by parts and substituting the boundary conditions for the 

boundary derivatives. This exercise was carried out for the previous problem in Eqs. (3.22) and 

(3.23). Then quadrature is used to approximate the integrals as in Eq. (3.24). With a slight 

generalization in the definition of the stiffness matrix, C in Eq. (3.25), the same formulation can 

be applied for any type of points. For this problem, the resulting weak form is: 

 
𝛿0,𝑗 (1 +

𝑈𝑘

𝑃𝑒𝑘
) 𝑦0,𝑘 + 𝛿𝑛+1,𝑗

𝑈𝑘

𝑃𝑒𝑘
𝑦𝑛+1,𝑘 + ∑ (

𝐶𝑗𝑖

𝑃𝑒𝑘
+ 𝑊𝑗𝐴𝑗𝑖 + 𝑈𝑘𝑊𝑗𝛿𝑗𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑗𝑟𝑘(𝒚𝑗) = 0 (3.73) 

From the previous discussions, we know the weak form, Eq. (3.73), is equivalent to the 

conventional form, Eq. (3.72), at the interior points, but the boundary conditions are treated 

differently. In order to compare the two methods for treating the boundary conditions, Eq. 

(3.25) is substituted for C, which gives the boundary equations:  

 
∑ [(1 +

𝑈𝑘

𝑃𝑒𝑘
) 𝛿0,𝑖 −

𝐴0,𝑖

𝑃𝑒𝑘
]

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊0 [∑ (
𝐵𝑜,𝑖

𝑃𝑒𝑘
− 𝐴0,𝑖 − 𝑈𝑘𝛿0,𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚0)] = 0 

∑ [
𝑈𝑘

𝑃𝑒𝑘
𝛿𝑛+1,𝑖 +

𝐴𝑛+1,𝑖

𝑃𝑒𝑘
]

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑛+1 [∑ (
𝐵𝑛+1,𝑖

𝑃𝑒𝑘
− 𝐴𝑛+1,𝑖 − 𝑈𝑘𝛿𝑛+1,𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚𝑛+1)] = 0 

(3.74) 

The first term is the boundary condition residual and the second is the interior residual 

evaluated at the boundary and multiplied by the quadrature weight. This relationship is like that 

found for the previous example, see Eq. (3.26). Rather than setting one or the other residual to 

zero, this procedure sets a weighted combination of the two to zero, like Eq. (1.15). Although 

neither residual will be identically zero, they will converge to zero. For Gauss points, the 

boundary quadrature weights are zero, so Eq. (3.72a) and (3.74) are equivalent.  

When Gauss points are used, the method is an accurate approximation to the method of 

moments and when Lobatto points are used, it is an accurate approximation to the Galerkin 

method. In each case the dispersion and convection terms are integrated exactly. If the rate 

terms are interpolated, like Eq. (3.33), integration of both the rate term and heat transfer term 
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miss exact integration by one degree. The reaction term is nonlinear, so the accuracy of the 

approximation depends on the severity of the nonlinearity. 

Eq. (3.73) can be expressed in the form:  

 
∑ 𝐴̃𝑗𝑖

𝑘

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑗𝑟𝑘(𝒚𝑗) = 0 (3.75) 

where: 

 
𝐴̃𝑗𝑖

𝑘 =
1

𝑃𝑒𝑘
𝐶𝑗𝑖 + 𝑊𝑗𝐴𝑗𝑖 + 𝛿𝑗𝑖 [𝑈𝑘𝑊𝑗+𝛿0,𝑗 (1 +

𝑈𝑘

𝑃𝑒𝑘
) + 𝛿𝑛+1,𝑗

𝑈𝑘

𝑃𝑒𝑘
]  

Eq. (3.72) can be expressed in the same form.  

Although the problem is formulated for any number of mass balance equations, we consider 

only one mass balance together with the energy balance.  A first order exothermic reaction is 

used: 

 
𝑟𝑘 = 𝐷𝑎𝑘𝑟̂(𝑦, 𝑇) = 𝐷𝑎𝑘(1 − 𝑦)exp (

20𝑇

𝑇 + 1
) (3.76) 

Da are the Damkohler numbers for energy and mass. The parameter values considered in the 

example are: Pet = 100, Pem = 200, U = 3, Dat = 0.2, Dam = 0.5. This problem is highly nonlinear 

due to the temperature dependence in Eq. (3.76).  

The form of Eq. (3.75) is similar to that of Eq. (3.44), so an iterative solution procedure like Eq. 

(3.46) can be used. The only difference is that here we have a coupled set of energy and mass 

balance equations. The coupling poses no difficulty other than creating some bookkeeping 

issues. Due to the coupling a Newton-Raphson method requires the simultaneous solution of 

all equations. An alternative procedure which solves the equations sequentially is a Picard 

iteration:  

 
∑(𝐴̃𝑗𝑖

𝑘 + 𝛿𝑗𝑖𝜇𝑘𝑖)

𝑛+1

𝑖=0

∆𝑦𝑖𝑘 = 𝑊𝑗𝑟𝑘(𝒚𝑗
0) − ∑ 𝐴̃𝑗𝑖

𝑘

𝑛+1

𝑖=0

𝑦𝑖𝑘
0  (3.77) 

where the Δ indicates the change in the variable over the iteration and superscript 0 indicates 

the initial guess or the values from the previous iteration. The μ are iteration parameters. One 

can think of these parameters as an approximation to the rate derivatives. For proper scaling, 

we take 𝜇𝑘𝑖 = 𝑎𝑘𝑊𝑖𝐷𝑎𝑘, where an a is supplied for each balance. Larger values of the iteration 

parameter make the matrix more diagonally dominant and will tend to reduce the size of 

changes, which can stabilize the iterations, but may slow down convergence. With this 

procedure, the matrices are modified by the iteration parameters and then factored, requiring 

O(⅔(nm+1)(n+2)3) operations. Since the matrix does not change from one iteration to the next, 

the factors need to be calculated only once. Once the matrices are factored, the iterations 

consist of first calculating the rates and then sequentially for each balance, calculate the right 

side of Eq. (3.77) and then update the values by a forward and back substitution with the 

factors of the matrices. The calculations per iteration are O(4(nm+1)(n+2)2). This method 
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normally converges slowly, because it is basically successive substitution and does not 

account for how the rates change with changes in y. However, the iterations require minimal 

calculation. 

The rate terms can be linearized about some initial or intermediate estimates y0 to give the 

approximation: 

 

𝑟𝑘(𝒚𝑗) ≈ 𝑟𝑘(𝒚𝑗
0) + ∑

𝜕𝑟𝑘
𝜕𝑦ℓ

|
𝒚𝒋

0

𝑛𝑚

ℓ=0

∆𝑦𝑗ℓ = 𝑟𝑗𝑘 + ∑𝑑𝑗ℓ
𝑘

𝑛𝑚

ℓ=0

∆𝑦𝑗ℓ (3.78) 

where y is the vector which includes temperature, T, as its first member. This linearization is 

substituted into Eq. (3.75) and a Newton-Raphson iteration, like Eq. (3.46), can be used to 

solve the system of equations.  

The iterations are then: 

 
∑ (𝐴̃𝑗𝑖

𝑘 − 𝛿𝑗𝑖𝑊𝑗𝑑𝑗𝑘
𝑘

)

𝑛+1

𝑖=0

∆𝑦𝑖𝑘 − 𝑊𝑗 ∑ 𝑑𝑗ℓ
𝑘

𝑛𝑚

ℓ=0
ℓ≠𝑘

∆𝑦𝑗ℓ = 𝑊𝑗𝑟𝑗𝑘 − ∑ 𝐴̃𝑗𝑖
𝑘

𝑛+1

𝑖=0

𝑦𝑖𝑘
0  (3.79) 

It is usually more accurate to formulate the equations to solve for changes, i.e. Δy, rather than 

directly for the updated values.  

The resulting matrix for the linearized problem, Eq. (3.79), with 3 interior points is of the form: 

 

[
 
 
 
 
 
 
 
 
 
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ]
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∆𝑇4

∆𝑦0

∆𝑦1

∆𝑦2

∆𝑦3

∆𝑦4]
 
 
 
 
 
 
 
 
 

 (3.80) 

This equation is a block 2x2 matrix (or in general (nm+1)x(nm+1)), where each block is an 

(n+2)x(n+2) matrix. The diagonal blocks are full and the off-diagonal blocks are diagonal.  

The coupling between y and T is through the derivatives of the rate terms in Eq. (3.78), which 

appear on the diagonals of each block. The Picard iteration neglects this coupling. This 

procedure, Eq. (3.79), requires solving one large matrix, rather than nm+1 smaller ones. Also, 

with the Newton-Raphson iteration, the matrix changes each iteration. Overall, each iteration 

requires O(⅔(nm+1)3(n+2)3) operations, substantially more than for the Picard iteration. We 

refer to this procedure as a full Newton-Rapson, since all the nonlinear equations are solved 

together. 
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The rate dependence in the energy equation can always be expressed as a linear combination 

of the mass balance equations. This relationship can be used to develop an alternate 

formulation. We will demonstrate the procedure for nm = 1, but keep in mind the energy 

equation can always be eliminated with a similar procedure. The energy and mass balance 

equations can be combined to give in matrix notation:  

 
𝑨̃0𝒚0 =

𝐷𝑎0

𝐷𝑎1
 𝑨̃1𝒚1 𝑜𝑟 𝒚0 =

𝐷𝑎0

𝐷𝑎1
 (𝑨̃0)

−1
𝑨̃1𝒚1 =

𝐷𝑎0

𝐷𝑎1
𝑮𝒚1 (3.81) 

Then the Newton-Raphson iterations simplify to:  

 
∑ (𝐴̃𝑗𝑖

1 − 𝛿𝑗𝑖𝑊𝑗𝑑𝑗1
1 − 𝑊𝑗𝑑𝑗0

0 𝐺𝑗𝑖)

𝑛+1

𝑖=0

∆𝑦𝑖1 = 𝑊𝑗𝑟𝑗1 − ∑ 𝐴̃𝑗𝑖
1

𝑛+1

𝑖=0

𝑦𝑖1
𝑠  (3.82) 

This formulation requires more calculations to set up the iterations, since the calculation of G 

requires roughly four times the calculations required to factor 𝑨̃0 or O(2⅔(n+2)3), but it requires 

fewer calculations per iteration since (when nm = 1) the dimension of the matrix is half that for full 

Newton-Raphson, Eq. (3.79). With this procedure, Eq. (3.82) is calculated and solved for Δy1, then 

Eq. (3.81) is used to calculate Δy0. We will call this the reduced procedure, since it reduces the size of 

the problem by eliminating the temperature dependence.  

From the discussion above, it is apparent there are tradeoffs between the iterative procedures 

discussed. The operation counts discussed above are:  

Picard: 𝑊𝑃𝐼 =
2

3
(𝑛𝑚 + 1)(𝑛 + 2)3 + 4(𝑛𝑚 + 1)(𝑛 + 2)2𝑁𝑃𝐼  

Full Newton: 𝑊𝐹𝑁 =
2

3
(𝑛𝑚 + 1)3(𝑛 + 2)3𝑁𝑁𝐼  

Reduced Newton: 𝑊𝑅𝑁 = 2
2

3
(𝑛 + 2)3 + 𝑛𝑚

2 (𝑛 + 2)2 (
2

3
 𝑛𝑚(𝑛 + 2) + 8)𝑁𝑁𝐼  

Where W and N designate the total operations and number of iterations for the different methods. 

 The Picard iterations is favored for larger systems, since the computational work grows in direct 

proportion to nm rather than to some power. It is also favored for large n. From testing we have found 

that solution of the algebraic problem to about 6 digits of accuracy requires about 8 Newton-Raphson 

iterations or 20 Picard iterations. The Picard method typically requires 2½ or more times as many 

iterations as a Newton method depending on the convergence tolerance. In our experiments, we have 

not found the number of iterations to be very sensitive to the values of the iteration parameters. For the 

Picard method, it is surprising that the number of iterations tends to decrease with n.  If n is too small, 

none of the methods converge. 
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Table 3.8 summarizes operation counts 

(in thousands of floating point operations, 

Kflops) for the three iterative procedures 

described above. The full Newton method 

is not nearly as efficient as the other two. 

This problem is small enough that for a 

single solution, efficiency is not a major 

issue, so an in-depth analysis is overkill. 

However, knowing how to analyze algorithms, without solving all the alternatives, is an important skill to 

have. Also, there are many cases where the problem could be much larger or could require many 

solutions. For example, the number of reactions and nm could be quite large. Radial as well as axial 

dispersion could be important making the problem two dimensional with many more points.  Suppose a 

small reactor was used to measure reaction rates, and the data needs to be analyzed as an integral 

reactor using nonlinear regression. In that case the problem would be solved hundreds of times. This 

type of analysis has been done and efficient methods are essential [Young and Finlayson (1973)].  

There are some other techniques that could potentially improve the efficiency of the 

calculations. Eq. (3.80) is a band matrix, so a band solver would be slightly more efficient. 

When Gauss points are used, the boundary equations for the first and last points do not 

depend on the rate, see Eqs. (3.72a) and (3.74). Those two equations can be eliminated at the 

outset to reduce the number of nonlinear equations which must be solved.  

In Newton-Raphson methods, the matrix in Eq. (3.79) or Eq. (3.82) is called the Jacobian 

matrix. Frequently, some efficiency can be gained by updating the Jacobian only periodically, 

e.g. every other iteration. For our problem calculating and factoring the Jacobian consumes 

about 70% of the calculations for an iteration, so there is a good potential for improvement. 

Other solution strategies may be discovered by working with the codes for this problem, e.g. 

start with a few Picard iterations, then switch to a Newton-Raphson. One could also consider 

iterative solution methods for the linear algebraic problem and a finite element discretization to create a 

more sparse matrix problem. 

 Figs. 3.43, 3.44 and 3.45 show some example profiles with Gauss, Chebyshev and Lobatto 

points, respectively. In all cases, the solid 

Table 3.8 Estimated Kflops for n = 18 

Method Picard 
Reduced 
Newton 

Full 
Newton 

Setup 10.7 21.3 0.0 

Iteration 3.2 8.5 42.7 

total* 74.3 89.6 341.3 

*8 iterations for Newton-Raphson, 20 for Picard 
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black line is the solution with n = 51, which 

is exact for practical purposes. The graphs 

for Chebyshev and Lobatto points show the 

solutions for both boundary collocation, Eq. 

(3.72a), and a natural treatment, Eq. (3.73) 

or (3.74). In the previous problem, the errors 

caused by boundary collocation were not 

obvious when comparing the profiles, see 

Figs. 3.9 and 3.10, and were only apparent 

when comparing fluxes. For this problem, 

the differences are clearly visible in the 

profiles of Figs. 3.44 and 3.45.  

The differences in the profiles are also visible in the L1 error norms for the conversion, y, 

shown in Fig. 3.46. There is again little difference in the comparison with L1 or L2 error norms. 

All of the errors for temperature, T, are smaller by roughly a factor of 5, which corresponds to 

the maximum variation of y relative to T. For this reason, all the reported error results are for 

conversion, y, and the mass balance equation. Fig. 3.46 shows virtually no difference in the 

results with the different points, Gauss, Chebyshev or Lobatto, but there are significantly 

greater errors when boundary collocation, Eq. (3.72a), is used with Chebyshev or Lobatto 

points instead of a natural treatment, Eq. (3.74). These results were calculated for every n for 

n = 9 to 31 and only odd points for larger n. The error tends to oscillate based on where the 

points lie with respect to the more difficult parts of the profile such as where the rate is large. 

Fig. 3.47 shows the error in conversion at the center. The error is calculated only for an odd 

number of points, since an even number requires interpolation to determine the value at the 

center and consequently the error is larger. In agreement with Fig. 3.46, Fig. 3.47 shows 

significantly larger error with boundary collocation and erratic behavior for n < 20. Although the 

overall average convergence rate is similar with boundary collocation, the actual error at some 

n is greater by almost one order of magnitude for Chebyshev points and two orders of 
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magnitude with Lobatto points. The error is 

larger with Lobatto points, because the 

difference between Eqs. (3.72a) and (3.74) 

is proportional to the boundary quadrature 

weights, W0 = Wn+1, and the weights are 

approximately twice as large for Lobatto 

points, so it is more important to treat the 

boundary condition correctly with Lobatto 

points. 

Fig. 3.48 shows the residual of Eq. (3.71) for 

two cases. The residual errors tend to be 

largest near the inlet and where the rate 

declines sharply as complete conversion is approached.  All point types display this behavior, 

but the errors are slightly smaller near the inlet and larger near the center for Chebyshev and 

Gauss points due to the greater concentration of points near the ends at the expense of their 

spacing near the center. 

Fig. 3.49 shows the residual of the inlet and outlet boundary conditions for the natural 

treatment of the mass balance equation, i.e. 

the left term in Eq. (3.74). These are 

identically zero for Gauss points. The errors 

are larger at the inlet as expected from Fig. 

3.48, but they converge exponentially. Eq. 

(3.74) relates the residual of the boundary 

condition to the interior residual of Fig. 3.48 

at x = 0 and 1. The boundary values of the 

interior residual are larger by a factor of 1/W0 

= 1/Wn+1. Although the boundary weights 

decrease in proportion to 1/n2, the residuals 

will decline at the faster exponential rate as 

shown for the previous examples in Figs. 

3.13, 3.38 and 3.39. 

The results for Lobatto points in Fig. 3.49 were calculated for every n from n = 9 to 51 and at 

only odd points for larger n. For Lobatto points the odd points give lower errors for n < 38 and 

even numbered points give lower errors at larger n. The oscillations between odd and even 

points are a function of the distribution of points with respect to the more difficult parts of the 

profile. Only odd numbered points were used for the Chebyshev calculations, so the results do 

not oscillate like those for the Lobatto results. 

These calculations provide another example of an application to a nonlinear boundary value 

problem. This example is different from the previous one since it contains the first derivative 
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convection term which dominates the smaller dispersion term. It shows, once again, that a 

natural or weak treatment of flux boundary conditions is superior to boundary collocation. In 

this case, there are significant errors in the internal profiles, not just the fluxes. The sharp 

profiles in this example require large n to achieve acceptable engineering accuracy.  For 

example, 11 points are required to achieve a one percent average L1 error and 15 for a one 

percent error in y at the center. This problem is a good candidate for a finite element approach.
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4. Parabolic Partial Differential Equations 
Parabolic equations are considered in this chapter. The first problem is a convective heat or 

mass transfer problems with a variable coefficient due to the velocity profile. This problem is a 

nonsymmetric one for transfer from a falling liquid film. It has a Dirichlet condition at one 

boundary and a no flux (Neumann) condition at the other. Bird, et al. (1960, p. 538) describe 

the problem and present a penetration solution valid near the inlet. This problem was also 

treated by Finlayson [1972, 2014, pp 41, 58] and by Villadsen and Michelsen (1978, sec. 4.3). 

These references include many others which address the problem.  

Finlayson used trigonometric trial functions while Villadsen and Michelsen used collocation at 

the base points of Radau quadrature. The reason for using Radau points will become evident. 

We wish to supplement the results of Villadsen and Michelsen by considering other choices of 

points.  We consider collocation at Gauss, Radau (left and right), Lobatto and Chebyshev 

points. A Galerkin method is also considered. Due to the no flux boundary condition, this 

problem also offers the opportunity to further test different methods for treating boundary flux 

conditions. 

When the spatial operators are discretized with a MWR a system of ordinary differential 

equations results. This system is first solved analytically to give a continuous solution in z. 

Numerical solution of the system of ordinary differential equations is then considered by 

several stepping techniques.  

4.1 Mass or Heat Transfer from Falling Liquid Film  

Consider laminar flow of a liquid film down 

a solid wall as shown in the illustration. Let 

the gas-liquid interface be at x = 0 and the 

solid wall at x = 1. The film is in laminar 

flow, so the velocity profile is parabolic, 0 at 

x = 1 and a maximum at x = 0. Like most 

convective heat and mass transfer 

problems, the no slip condition at the wall 

creates a singularity there. Assume the 

entering liquid is at one composition 

(temperature) and the gas-liquid interface is 

at a different composition. Since the wall is solid, assume no flux there.  The dimensionless 

governing equations for the problem are: 

 
(1 − 𝑥2)

𝜕𝑦

𝜕𝑧
=

𝜕2𝑦

𝜕𝑥2
 (4.1) 

with: 

 
𝑦(0, 𝑧) = 0,    

𝜕𝑦

𝜕𝑥
(1, 𝑧) = 0  and  𝑦(𝑥, 0) = 1 (4.1a) 
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This model can be compared to a simpler lumped parameter model where the transfer is 

governed by a mass transfer coefficient: 

 2

3

𝑑𝑦̅

𝑑𝑧
= −𝑆ℎ 𝑦̅ (4.2) 

where Sh is the Sherwood number. For heat transfer, the analogous parameter would be the 

Nusselt number, a dimensionless heat transfer coefficient. 𝑦̅ is the mixing cup average 

composition given by: 

 
𝑦̅(𝑧) =

∫ (1 − 𝑥2) 𝑦 𝑑𝑥
1

0

∫ (1 − 𝑥2) 𝑑𝑥
1

0

 =
3

2
∫ (1 − 𝑥2) 𝑦(𝑥, 𝑧) 𝑑𝑥

1

0

 (4.3) 

Using the average energy equation or divergence theorem, the Sherwood number can be 

calculated from the solution by two different methods:  

 
𝑆ℎ =

−2

3𝑦̅

𝑑𝑦̅

𝑑𝑧
=

 1  

𝑦̅

𝜕𝑦

𝜕𝑥
(0, 𝑧) (4.4) 

The Sherwood number is another normalized flux quantity, similar to the effectiveness factor in 

the reaction and diffusion problem. 

4.1.1 Orthogonal Collocation  

The conventional method of solution by orthogonal collocation, pseudospectral, or differential 

quadrature methods is to use the matrix derivative operators to convert the problem to a 

coupled set of ordinary differential equations: 

 
(1 − 𝑥𝑗

2)
𝑑𝑦𝑗

𝑑𝑧
− ∑ 𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=0

= 0 (4.5) 

for j = 1,…,n, with 

 
𝑦𝑗(0) = 1,   𝑦0 = 0,  and  ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 0 (4.5a) 

As before, A and B give approximations to the first and second derivatives, section 2.5. The 

matrix, B, is not symmetric even though the operator is self adjoint. 

Eq. (4.5a) approximates the no flux condition at x = 1 using boundary collocation as suggested 

in virtually all texts on the orthogonal collocation or pseudospectral method. Based on the 

results in Chapter 3 for boundary value problems, we can expect the boundary collocation 

approach to be inferior to a natural treatment, except for Gauss points or a method with a zero 

quadrature weight, Wn+1 = 0 (see Appendix B). Villadsen and Michelsen solved the problem 

using the base points of the Radau quadrature which has a quadrature weight at x = 0, but no 

quadrature weight at x = 1. We call these points Radau-left, while those with a weight at x = 1 
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we call Radau-right. The base points and 

weights for Gauss, Radau-left, Lobatto and 

Clenshaw-Curtis quadrature (Chebyshev 

points) are compared in Fig. 4.1. All but the 

Radau points are symmetric about x = 0.5. 

The Radau-left points are skewed away from 

x = 0 and are more densely spaced near x = 

1. Using collocation at the Radau-left points 

is somewhat counterintuitive, since for this 

problem large gradients occur near x = 0 for 

small z and the point spacing is less dense in 

that area. The Radau-right points are the 

mirror image of the Radau-left points and 

have a greater density of points near x = 0.  

As discussed in Chapter 3, an alternative weak formulation can be constructed using the 

stiffness matrix. For Eq. (4.1) the weak formulation is: 

 
(1 − 𝑥𝑗

2)𝑊𝑗

𝑑𝑦𝑗

𝑑𝑧
+ ∑ 𝐶𝑗𝑖𝑦𝑖 = 0

𝑛+1

𝑖=0

 (4.6) 

for j = 1,…,n + 1 where C is the stiffness matrix given by Eq. (2.111) or (3.25). By examining the 

definition of C, it is clear that at the interior points Eq. (4.6) is equal to Eq. (4.5) multiplied by 

the quadrature weights, Wj, so the equations are equivalent.  At the boundary point, n + 1, Eq. 

(4.6) is equivalent to:  

 
∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1 ∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 0 (4.7) 

It differs from Eq. (4.5a) by the additional second term. The two terms are a weighted 

combination of two residuals: the boundary condition residual and the interior residual 

evaluated at the boundary weighted by Wn+1. The equation is like Eq. (1.15). This is the same 

relationship as before, see Eqs. (3.26), (3.45) and (3.74). With this natural treatment of the 

boundary condition, we can expect the residual of the boundary condition to converge along 

with the residual of the differential equation as in Figs. 3.13, 3.38, 3.39. 

The stiffness matrix, C, is symmetric for Gauss, Radau (left and right) and Lobatto points and 

for Chebyshev points when n < 4. So, the no flux boundary condition is embedded in Eq. (4.6). 

The boundary weight is zero for Gauss and Radau-left points, so the two formulations, Eqs. 

(4.5a) and (4.7), are equivalent. 

After eliminating the boundary values, y0 and yn+1, from the equations, Eq. (4.5) reduces to:  
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(1 − 𝑥𝑗

2)
𝑑𝑦𝑗

𝑑𝑧
− ∑𝐵̂𝑗𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (4.8) 

where: 

 
𝐵̂𝑗𝑖 = 𝐵𝑗𝑖 − 𝐵𝑗,𝑛+1

𝐴𝑛+1,𝑖

𝐴𝑛+1,𝑛+1
  

Similarly, elimination of boundary values from Eq. (4.6) gives: 

 
(1 − 𝑥𝑗

2)𝑊𝑗

𝑑𝑦𝑗

𝑑𝑧
+ ∑𝐶̂𝑗𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 (4.9) 

where: 

 
𝐶̂𝑗𝑖 = 𝐶𝑗𝑖 − 𝐶𝑗,𝑛+1

𝐶𝑛+1,𝑖

𝐶𝑛+1,𝑛+1
   

Eqs. (4.8) and (4.9) are identical in form. 

4.1.2 Galerkin Method 

Section 3.1.3 describes the Galerkin method for the boundary value problem. For this problem, 

the weak form, Eq. (4.6), with Lobatto or Radau points approximates the Galerkin method, 

which is given by: 

 
∑ (𝐷𝑗𝑖

𝑑𝑦𝑖

𝑑𝑧
+ 𝐶𝑗𝑖𝑦𝑖) = 0

𝑛+1

𝑖=0

 (4.10) 

where, using quadrature, the mass matrix D is: 

 
𝐷𝑗𝑖 = ∑ 𝑊𝑘(1 − 𝑥𝑘

2)ℓ𝑗(𝑥𝑘)ℓ𝑖(𝑥𝑘)

𝑚+1

𝑘=0

 (4.10a) 

Lobatto and Radau points give exact integration of the Galerkin stiffness matrix, Eq. (2.111) or 

(3.25). The mass matrix reduces to the diagonal form in Eq. (4.6) when m = n. Lobatto and 

Radau quadrature are exact for polynomials of degree 2n + 1 and 2n respectively, while the 

integrand of Eq. (4.10a) is a polynomial of degree 2n + 4. The other point choices give less 

accurate integration. As explained in Section 3.1.2, Gauss points give the stiffness matrix for 

the method of moments. Chebyshev points can also use a weak formulation with a natural 

boundary condition treatment. For additional discussion, see Sections 3.1.2 and 3.1.3. 

If the problem is solved by the full Galerkin method, Eq. (4.10), the coefficients of dyn+1/dz  are 

nonzero, so yn+1 cannot be eliminated from the approximation as with the collocation methods. 

Of course, y0 can be eliminated, so the Galerkin method requires the simultaneous solution of 

n + 1 rather than n equations. 
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Regardless of method, the equations are coupled initial values problems. To obtain accurate 

results, the initial conditions must be determined correctly. Most examples using the Galerkin 

method evolve in time, whereas this one evolves with z. Time dependent problems frequently 

have a constant coefficient on the time derivative, so the correct treatment here is not obvious. 

When the initial conditions are a general function of x, the collocation methods use the 

procedure given in Eq. (4.5a):  

 
𝑦0 = 0,  𝑦𝑛+1 = ∑

−𝐶𝑛+1,𝑖

𝐶𝑛+1,𝑛+1
𝑦𝑖

𝑛

𝑖=1

 and 𝑦𝑖 = 𝑦(𝑥𝑖, 0) for 𝑖 = 1,… , 𝑛  

These are referred to as collocation initial conditions. For the Galerkin method, with a constant 

coefficient, the initial values are selected so the weighted distribution of the initial condition 

follows:  

 
∫ ℓ𝑗(𝑥)𝑦(𝑥, 0)𝑑𝑥 =

1

0

∑ 𝑦𝑖 ∫ ℓ𝑗(𝑥)ℓ𝑖(𝑥)
1

0

𝑛+1

𝑖=1

𝑑𝑥  

with, y0 = 0, since it is an essential boundary condition. For reference, this is called the 

standard treatment. However, think in terms of energy, suppose y represents temperature 

which is a general function of x. The requirement is to ensure the distribution of the initial 

energy is consistent. The energy flowing at a given x depends on the velocity, so velocity must 

be taken into consideration. The correct initial condition for the Galerkin method is: 

 
∫ ℓ𝑗(𝑥)(1 − 𝑥2)𝑦(𝑥, 0)𝑑𝑥 =

1

0

∑ 𝑦𝑖 ∫ ℓ𝑗(𝑥)ℓ𝑖(𝑥)(1 − 𝑥2)𝑑𝑥
1

0

𝑛+1

𝑖=1

= ∑ 𝐷𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

  

Where ∑ 𝐷𝑗𝑖𝑦𝑖
𝑛+1
𝑖=1 = 𝑊𝑗(1 − 𝑥𝑗

2)𝑦𝑗 except for the case n = 1. This formulation insures not only 

that the initial mixing cup value is correct, but the weighted distribution is also correct. These 

are termed velocity weighted initial conditions. Both the standard and velocity weighted 

methods reduce to collocation when the integrals are approximated with the quadrature 

associated with the collocation method. 

4.1.3 Continuous Solutions in z 

Eq. (4.8) or (4.9) can be solved analytically by assuming a solution of the form 𝑦 = 𝑒−𝜆𝑧 and 

then computing the eigenvalues and eigenvectors of the generalized eigenproblem: 

 𝑪̂𝒚 = 𝜆𝑾̂𝒚 (4.11) 

In Eq. (4.11), 𝑪̂ is replaced by −𝑩̂ for the first formulation, and 𝑾̂ is the diagonal matrix 

multiplying dy/dz in either collocation formulation. For the Galerkin method C is used in place of 

𝑪̂, and D is substituted for 𝑾̂, also i and j = 1,…n + 1. Consequently, there is an additional 

eigenvalue with the Galerkin method. 

If the eigenvalues, λk, are all real, then the continuous time solution is [Franklin (1968)]: 
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𝑦𝑖 = ∑ ∑𝑣𝑖𝑘𝑣𝑘𝑗

−1𝑦𝑗(0) 𝑒−𝜆𝑘𝑧

𝑛

𝑗=1

𝑛

𝑘=1

= ∑ 𝑎𝑖𝑘𝑒−𝜆𝑘𝑧

𝑛

𝑘=1

 (4.12) 

where vik, are the eigenvectors. For collocation, 𝑎𝑛+1,𝑘 for the boundary value yn+1 are 

calculated by substitution of Eq. (4.12) into Eq. (4.5a) or (4.6). For a Galerkin method the 

upper limit of the summation is n + 1, yn+1 and 𝑎𝑛+1,𝑘 are directly from Eq. (4.12). 

Using Eq. (4.3) the mixing cup composition is: 

 
𝑦̅ =  ∑ ∑

3

2
𝑊𝑖(1 − 𝑥𝑖

2) 𝑎𝑖𝑘

𝑛

𝑖=1

𝑒−𝜆𝑘𝑧

𝑛

𝑘=1

= ∑ 𝑐𝑘𝑒−𝜆𝑘𝑧

𝑛

𝑘=1

 (4.13) 

Determination of the Sherwood number requires calculation of the boundary flux. As shown in 

Eq. (4.4), the boundary flux can be calculated from either 𝜕𝑦/𝜕𝑥|𝑥=0 or from 𝑑𝑦̅/𝑑𝑧. If 

calculated correctly as discussed in section 3.1.4, it makes no difference which method is 

used. The coefficients of the boundary flux are conveniently given by the weak form of the 

approximation: 

 𝜕𝑦

𝜕𝑥
|
𝑥=0

= − ∑ 𝐶0,𝑖𝑦𝑖 =  −∑ ∑ 𝐶0,𝑖𝑎𝑖𝑘

𝑛

𝑖=1

𝑒−𝜆𝑘𝑧

𝑛

𝑘=1

𝑛+1

𝑖=1

= ∑ 𝑑𝑘𝑒
−𝜆𝑘𝑧

𝑛

𝑘=1

 (4.14) 

It can be shown that 𝑑𝑘 = −2

3
𝜆𝑘𝑐𝑘, so Eq. (4.14) gives the same boundary flux as the 

differentiation of Eq. (4.13). The Sherwood number is then:  

 
𝑆ℎ =

−2∑ 𝜆𝑘𝑐𝑘𝑒−𝜆𝑘𝑧𝑛
𝑘=1

3∑ 𝑐𝑘𝑒−𝜆𝑘𝑧𝑛
𝑘=1

=
∑ 𝑑𝑘𝑒−𝜆𝑘𝑧𝑛

𝑘=1

∑ 𝑐𝑘𝑒−𝜆𝑘𝑧𝑛
𝑘=1

 (4.15) 

The asymptotic Sherwood number applies for large z: 

 
𝑆ℎ∞ = lim

𝑧→∞
𝑆ℎ =

−2𝜆1

3
 (4.16) 

The analytical solution to the problem is like Eq. (4.13) except that it is an infinite series. The 

collocation solution approximates a truncation of the infinite series. In the analytical solution, all 

of the eigenvalues are not only real and negative but also the coefficients, c, are all positive. 

The solution is a series of different modes each decaying at a different rate.  

The statements above apply to the analytical solution, but what about the numerical solutions? 

Whether an approximation produces real eigenvalues, is one test for the suitability of a 

method. If 𝑪̂ and 𝑾̂ in Eq. (4.11) are symmetric, it can be proven that the eigenvalues are all 

real. The weak formulation, Eqs. (4.6) and (4.9), produces symmetric matrices for all but 

Chebyshev points with n > 3. As explained above, the conventional formulation, Eqs. (4.5) and 

(4.8), and weak formulation are equivalent when the boundary quadrature weight is zero, 

which is true for Gauss and Radau left points. Boundary collocation makes the matrix 
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asymmetric for Lobatto and Radau right points and creates additional asymmetry for 

Chebyshev points. The consequences of this asymmetry will be discussed shortly. 

An eigenvalue problem like this can be solved more efficiently when matrices are symmetric. 

When the matrices are not symmetric there is no advantage to treating the eigenproblem in 

generalized form, Eq. (4.11), so one should divide through by diagonal matrix, 𝑾̂, to give the 

identity matrix on the right hand side. 

To test for possible complex eigenvalues and negative coefficients, c, all the nonsymmetric 

eigenproblems were solved for n ≤ 60. For the weak formulation, Chebyshev points produce 

only real eigenvalues and positive coefficients, c. For the conventional formulation, Eqs. (4.5) 

and (4.8), Radau-right points give complex eigenvalues for n > 4, Lobatto points give complex 

values for n = 4-6 and n > 11, Chebyshev points give complex values for n = 28, 45, 50 and 

58. The coefficients, c, are negative for many cases when the eigenvalues are real. The 

propensity to produce complex eigenvalues and negative coefficients is directly related to the 

magnitude of the boundary quadrature weights, Wn+1, and hence the degree of difference 

between Eqs. (4.5a) and (4.7). For large n, the Chebyshev (Clenshaw-Curtis) boundary 

weights are half the Lobatto and Radau boundary weights.  

On the surface, these results appear to be different from previous work which has analyzed 

approximations to the constant coefficient heat equation. Gottlieb and Lustman (1983) found 

that Chebyshev points produce only real eigenvalues for the heat equation with general 

boundary conditions that include those in Eq. (4.1a). The analysis of the heat equation by 

Canuto, et al. (1988, p. 407) proved real eigenvalues for Lobatto and Chebyshev points with 

Neumann and Dirichlet boundary conditions. However, they consider a weak formulation with a 

natural boundary condition treatment, similar to that used here. Funaro (1993, pp. 143, 204) 

also considered eigenvalues with a natural boundary condition treatment. Unfortunately, these 

previous works are cited to support the suitability of the conventional formulation using 

boundary collocation. It is obviously incorrect to generalize the results to a different boundary 

condition treatment, and, in this case, to a problem with variable coefficients. 

To reconcile these differences, we did some limited testing of the constant coefficient heat 

equation with boundary collocation. Since Canuto, et al. (1988) and Funaro (1992) used a 

natural boundary condition treatment, their results do not apply to the case of boundary 

collocation. We found that with boundary collocation, using Chebyshev points produces only 

real negative eigenvalues, but the coefficients, c, are frequently negative. For Lobatto points, 

the eigenvalues are complex for n > 6, so with Lobatto points the conventional formulation 

with boundary collocation is unsuitable even for the constant coefficient problem. Although not 

obviously wrong, the use of boundary collocation with Chebyshev points is likely to be less 

accurate as found for all the problems tested here. 

The accuracy of our results were double checked with two completely independent 

calculations: (1) in Fortran using the LAPack code DGEEV [Anderson, et al. (1999)] and (2) in 

Octave using the eig function. The results agreed to within the limits of machine precision. 
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Tables 4.1 and 4.2 summarize this discussion concerning the suitability of the various 

formulations. Based on these results, Lobatto and Radau-right points are unsuitable using the 

conventional formulation but are viable using the weak formulation. Some limited calculations 

using the conventional formulation with Chebyshev points (excluding n = 28, 45, 50 and 58) 

are included due to its popularity. 

Villadsen and Michelsen (1978) gave no clear explanation for their selection of Radau-left 

points. Since they used the conventional formulation, i.e. boundary collocation, their choice 

gives the most accurate quadrature with a zero boundary weight at the no flux boundary. Its 

equivalence to the weak formulation insures the eigenvalues are real. They did not present 

results with other points nor did they consider a natural or weak formulation of flux boundary 

conditions. 

 Figs. 4.2 and 4.3 show the first few eigenvalues calculated by several methods for n = 4 and 

8, respectively. Tables 4.3 and 4.4 list the calculated eigenvalues and coefficients, c,  for n = 

6. The notation “bc” (boundary collocation) designates the conventional formulation of the 

Chebyshev method, i.e. Eq. (4.5) and (4.5a). Due to the equivalence of the Galerkin method 

Table 4.1 

Conventional Formulation, Eq. (4.5) 

Points 
Equivalent 

to Eq. (4.6) 
Eigenvalues 

Gauss yes real 

Chebyshev no complex 

Lobatto no complex 

Radau Left yes real 

Radau Right no complex 

 

Table 4.2 

Weak Formulation, Eq. (4.6) 
Points Symmetric Eigenvalues 

Gauss yes real 

Chebyshev no real 

Lobatto yes real 

Radau Left yes real 

Radau Right yes real 

 

 Table 4.4 Coefficients for n = 6 

 Exact Lobatto Gauss Chebyshev Cheb. bc Radau L Radau R Galerkin 

c1 0.7897026 0.7897026 0.7897032 0.7897058 0.7896109 0.7897025 0.7897027 0.7897026 

c2 0.0972551 0.0972323 0.0969374 0.0971973 0.0973883 0.0973712 0.0971233 0.0972655 

c3 0.0360936 0.0370370 0.0424662 0.0386532 0.0391686 0.0337807 0.0381707 0.0369531 

c4 0.0186864 0.0084942 0.0060119 0.0066653 0.0037217 0.0170300 0.0171504 0.0183208 

c5 0.0114018 0.0407402 0.0647798 0.0524277 0.0552174 0.0315027 0.0004645 0.0300564 

c6 0.0076760 0.0000080 0.0001015 0.0000446 -0.0004130 0.0000007 0.0573884 0.0047906 

∑ 𝑐𝑘𝑘   0.9608154 0.9732143 1.0000000 0.9846939 0.9846939 0.9693878 1.0000000 0.9732143 

         

 Table 4.3 Eigenvalues for n = 6 

 Exact Lobatto Gauss Chebyshev Cheb. bc Radau L Radau R Galerkin 

λ1 5.1216693 5.1216693 5.1216703 5.1216811 5.1213806 5.1216691 5.1216695 5.1216693 

λ2 39.660839 39.661044 39.650772 39.658315 39.496120 39.674012 39.646485 39.662482 

λ3 106.24923 105.95054 107.19163 105.87924 105.32354 103.91631 108.32712 106.59530 

λ4 204.85606 201.21666 198.03906 197.75929 215.87933 243.94612 180.92125 215.45265 

λ5 335.47320 367.15910 781.54249 502.19930 506.14967 299.49872 663.99515 457.39698 

λ6 498.09708 950.82201 2031.1571 1304.0961 959.73919 2999.4014 1011.6461 1054.5628 
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and Rayleigh-Ritz method for this problem, it can be shown that the eigenvalues are greater 

than the exact ones [Finlayson (1972, 2014), ]. 

Figs. 4.4 and 4.5 show the convergence of the first and sixth eigenvalues, respectively.  When 

formulated correctly, the convergence of the coefficients mirrors that of the eigenvalues. Fig. 

4.6 shows how Galerkin initial conditions influence the convergence of coefficient c1. For the    

results labeled “coll. ic” the initial conditions are like those for the collocation method. The 

result labeled “standard” use the integral formula without velocity weighting, while those 

labeled “velocity” include the velocity weighting. Clearly, the method of treatment makes a 

difference and the velocity weighted method is the correct one. 

The relative convergence rates using the various points are similar to those for the linear 

boundary value problems in Chapter 3. However, in this case we have added the Radau 

points, which tend to have accuracy between that of Lobatto and Gauss points. Chebyshev 

points with boundary collocation give the worst convergence, which is disconcerting since it is 

probably the most popular formulation in the pseudospectral literature. Although no formal 
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analysis was performed, these calculations 

reached the limits of roundoff with about 13 

digits of accuracy and then began to creep 

upward slowly for very large n. 

As others have observed, the first n/2 

eigenvalues are reasonably accurate in all 

cases. For example, Fig. 4.5 shows that most 

methods give approximately one percent error 

in the 6th eigenvalue when n = 12. The 

largest calculated eigenvalues are 

significantly greater than the exact ones. The 

differences between the exact and maximum 

calculated eigenvalues grows rapidly with n. If 

one thinks about how best to approximate the infinite series, then at least qualitatively, this 

behavior makes sense. The smaller eigenvalues are the most important, since their effects 

damp out more slowly.  Engineers often perform calculations with the simplified Eq. (4.2) and 

the asymptotic Sherwood number which is dependent only on the first eigenvalue. It is logical 

to use exact values for the smaller eigenvalues and perhaps lump several of the larger ones 

together. We might think of the 3rd eigenvalue in Fig. 4.2 as representing the 3rd and 4th modes 

and the 4th representing the 5th and larger. Also, note that the last row of Table 4.4 gives 

𝑦̅(0) = ∑ 𝑐𝑘𝑘 . The exact value is unity, while the sum of the first six analytical values is 0.9608. 

In the limit, as an eigenvalue goes to infinity, the value of its term will damp immediately.  

Truncating the infinite series is equivalent to treating the neglected higher eigenvalues as if 

they are (negative) infinite. The difference between unity and the sum of the approximate 

coefficients gives the sum of the coefficients for the terms treated as if they had infinite 

eigenvalues.  

Although this argument may seem plausible, we note in Table 4.4, the large eigenvalues are 

frequently accompanied by small coefficients, so they contribute little to the solution. These 

large eigenvalues also have a downside when the problem is integrated numerically in z by a 

stepping method. Large eigenvalues create issues with numerical stability for explicit stepping 

methods. Numerical solutions in z will be discussed shortly.  

Asymptotic relationships are available for the eigenvalues and coefficients of the analytical 

solution. From those relationships and the approximate solutions the following asymptotic 

relationships were determined: 

 𝜆𝑘 → (4𝑘 − 1.677)2 

𝑐𝑘 → 3.820/𝜆𝑘 
(4.17) 

These relationships give values within 0.1% for k = 5 to 53 of the values calculated with 100 

Lobatto points. 
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Figs. 4.7 and 4.8 show the calculated maximum eigenvalues for the various methods. In all 

cases, the values of the maximum eigenvalues become asymptotic at large n and can be 

approximated by:  

 
𝜆𝑚𝑎𝑥 → 𝑎 (

𝑛

30
)

𝑏

 (4.18) 

Values for Eq. (4.18) were determined 

from the computed values for n > 30 and 

are listed in Table 4.5. It appears that if 

still larger values were fit, the asymptote 

will have an exponent of 6. Values to Eq. 

(4.18) were not calculated for the Radau points. For large n the values for Radau left points 

follow those for Gauss points and results for the Radau right points follow those for the Lobatto 

points. An exponent of 6 for b is larger than that for a simple constant coefficient transient heat 

conduction problem. For that problem the exponent is 4 for both Dirichlet and Neumann 

boundary conditions [Canuto, et al. (1988), p. 98]. For this problem, Eq. (4.1), with mixed 

Dirichlet/Neumann boundary conditions, the parabolic velocity profile causes the exponent to 

approach a value of 6. The additional two degrees is to be expected from the matrix norm of 

𝑾̂. Here again, we find a significant difference between this problem and a simple constant 

coefficient problem. Obviously, the power of 4 does not generalize to this problem. 

The asymptotic lines in Fig. 4.8 are approximately parallel, so by comparing the constants, a, 

the maximum eigenvalues are found to be smallest for Lobatto or Radau-right points. The 

maximum eigenvalues 4.5 times greater for Gauss and Radau-left points and 2.0 times greater 

for Chebyshev points. Referring back to Fig. 4.1, it is apparent that the magnitude of the 

eigenvalues correlates with the grid density near x = 1, where the velocity goes to zero. A fine 

grid in this area causes larger eigenvalues to be computed. For n = 30 the maximum 

eigenvalues are roughly 2 to 3 orders of magnitude larger than those given by Canuto, et. al. 

(1988) for the transient heat equation (depending on point selection and boundary condition). 
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Table 4.5 Parameters of Eq. (4.18)  
 Lobatto Gauss Chebyshev Galerkin 

a 4.05x106 1.83x107 7.98x106 6.25x107 

b 5.822 5.932 5.869 5.690 
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For finite difference and finite element methods, the eigenvalues grow with n2 [Strang and Fix 

(1973)], so those methods would also have much smaller maximum eigenvalues for large n. 

The implication of these differences will become more apparent when we discuss numerical 

solutions in z for this problem. 

Rather than discuss the accuracy of eigenvalues and coefficients, we should discuss the 

accuracy of the computed solutions to determine the number of points actually needed. The 

magnitude of the eigenvalues for n > 20 is of little practical interest if only a few points are 

required to give the desired accuracy. The real power of these methods is that they frequently 

produce good accuracy with only a few points.  For example, Fig. 4.9 shows the mixing cup 

average y and Sh as a function of z for the various point choices with n = 3. The higher terms 

damp out by z = 0.10, so the solution is asymptotic from there on. The slope and intercept of 

the asymptotic part is determined by the first eigenvalue and coefficient, respectively. Since 

one would normally be interested in transferring all or most of a component, the figure shows 

the portion of the curve for approximately 90 percent transfer which is reached at z = 0.4. The 

average y overlays the exact solution for all methods and errors in Sh are evident only at very 

small z. If one is interested in a significant transfer, n can be small. 

There could be some problems where the results for small z are important. Fig. 4.10 shows the 

evolution of the profiles with z together with approximate solutions for 4 Lobatto points.  Due to 

the sudden change in boundary composition at z = 0, the solution is not well approximated by 

a low order polynomial, so the approximate solution oscillates about the actual one between 

the collocation points, but the values at the nodes are reasonably accurate and show minimal 

overshoot. All of the point choices display the same behavior to some degree. Fig. 4.11 shows 

the profiles at z = 0.01 for the different points. Do not attempt to draw too many conclusions 

from any single figure, because the approximate solutions tend to oscillate about the exact 

solution. Fig. 4.12 shows the trend of the approximate profiles as the number of Lobatto points 

is increased. The other points display similar but somewhat less accurate behavior.  
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Figs. 4.13 and 4.14 focus more closely on the Sherwood number or normalized flux near the 

inlet. A penetration solution is presented by Bird, et al. (1960). Villadsen and Michelsen (1978) 

extend that approximation with additional terms. Their first perturbation gives: 

 𝑆ℎ → 1/(√𝜋 𝑧 − 3𝑧)  (4.19) 

For small z, the second denominator term is insignificant, so the Sherwood number varies 

inversely with the square root of z. Including the second term extends the range, so Eq. (4.19) 

is within one percent of the exact value for z < 0.02.  Additional terms extend the valid range to 

larger z. These approximations are accurate at precisely the same conditions where the global 

collocation or MWR solutions require large n. Fig. 4.13 shows the Sherwood number 

calculated for various numbers of Lobatto points. Tracing the values for n = 4, we see that as z 

increases the calculated value crosses the exact value at about z = 0.006, then reaches a 

maximum positive deviation of about 4% at z = 0.013 and is within 1% of the exact values for z 

> 0.030. The curves for all n, follow the same basic behavior, but accurate solutions are 

shifted to smaller and smaller z. If one is content with a maximum 5% error, the cut off z values 

for valid solutions are: z = 0.035, 0.0051, 0.0015, 0.00056, 0.00026 with n = 2, 4, 6, 8, and 10 
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Lobatto points respectively. These values are exceedingly small compared to the 90% transfer 

point of z = 0.40. 

Fig. 4.14 shows that other point choices have the same basic behavior. This is a case where 

you can almost pick your poison and then pay now or pay later. The point choices that level off 

at higher values of Sh and cross at lower z have a greater positive deviation at larger values of 

z. For example for a wide range of n, the maximum positive deviations are 4 to 5 percent for 

Lobatto and Radau-left points, 25 to 35 percent for Gauss and Radau-right points and 10 to 15 

percent for Chebyshev points.  

The behavior of the errors in Figs. 4.13 and 4.14 makes it difficult to state which points are 

best. Figs. 4.15 and 4.16 show the convergence of the average composition, 𝑦̅ and the 

boundary flux, 𝜕𝑦/𝜕𝑥|𝑥=0, for the various formulations. Here again, the popular Chebyshev 

method with boundary collocation, Eqs. (4.5) and (4.5a), has been designated as “bc”, and 

again this choice gives the worst performance of the formulations tested. The limits of roundoff 

was again at about 10-13, but the clutter was not included in the figures. There are no clearcut 

winners in these tests, the results tend to follow those in Figs. 4.4 and 4.5. It appears that there 

is a greater difference between the methods for the easier conditions at z = 0.10 than at z = 

0.01. For this problem and those in Chapter 3, it seems to be a general trend that easier 

problems show a greater difference between the different points. Problems with smooth 

profiles, easily approximated by low order polynomials, are the ones where these collocation 

methods shine relative to other methods, such as finite differences or finite elements.  

We believe the conventional formulation using boundary collocation, Eq. (4.5), with Chebyshev 

or Lobatto (any points with a nonzero quadrature weight at the boundary) should be buried and 

forgotten. There is a good chance that nonphysical complex eigenvalues will be calculated. 

When the eigenvalues are not complex, it gives the slowest rate of convergence. The weak 

formulation with natural boundary conditions, Eq. (4.6), is symmetric for all but Chebyshev 

points. Although the weak formulation with Chebyshev points gives real eigenvalues, less 

efficient nonsymmetric eigenvalue software must be used. When considering there is no gain 

in accuracy relative to the other choices, there is not much to recommend it over the other 
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methods for similar problems. The Lobatto points seem to have a slight edge in terms of 

accuracy and because their maximum eigenvalues are somewhat smaller and more accurate 

than those of the other choices. 

4.1.4 Numerical Solutions in z 

Parabolic equations like, Eq. (4.1) are more often solved numerically with time (or in this case 

z) stepping methods rather than analytically, because the analytical approach is not applicable 

for nonlinear problems. Once collocation is applied, the problem is reduced to a set of coupled 

ordinary differential equations (ODEs), initial value problems, Eq. (4.8) or (4.9). This is 

sometimes called the method of lines, referring to the lines traced out in z by each of the nodes 

in x.  

The numerical solution of initial value problems is a large mature field of study. With 

Matlab/Octave there are robust built in functions which can do all the work for you. For other 

languages there are libraries available, which can be freely downloaded. However, here we will 

do some of our own calculations to gain better insight. We cannot possibly cover the entire 

field, but will demonstrate some of the terminology, types of methods available, and tradeoffs 

between different methods when applied to paraboloic collocation problems. The ODE 

packages are concerned with step size selection and other practicalities. We will use a 

constant step size to more clearly visualize the characteristics of different methods.  

The problem can be expressed as: 

 
𝑾̂

𝑑𝒚

𝑑𝑧
+ 𝑪̂𝒚 = 0 or 

𝑑𝒚

𝑑𝑧
=  −𝑾̂−1𝑪̂𝒚 =  𝑭(𝒚, 𝑧) 

(4.20) 

Where y is the vector of values y(xi ,z) at the interior collocation points. 𝑾̂ and 𝑪̂ are, 

respectively, diagonal and full n by n matrices defined by either Eq. (4.8) or (4.9). The 

collocation initial conditions are y = 1. The far right expression is a more general representation 

of the problem which admits nonlinear and variable coefficient problems. 

Basic Methods and Stability 

The values are known initially, so the solution proceeds in a stepwise fashion moving in 

increments of ℎ = 𝑧𝑘+1 − 𝑧𝑘. The simplest approach is the Euler method: 

 𝒚𝑘+1 − 𝒚𝑘 = ℎ 𝑭(𝒚𝑘, 𝑧𝑘) (4.21) 

which is a one sided first order finite difference approximation to Eq. (4.20). The right hand 

side is calculated from the known values starting at the initial conditions. Once the right hand 

side has been calculated Eq. (4.21) gives the conditions at the end of the step. This process is 

repeated over and over until the desired end point is reached. For our problem, the right hand 

side is calculated with a matrix-vector multiply, requiring O(2n2) floating point operations 

(flops). 
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Fig. 4.17 shows the mixing cup average composition and flux calculated for Lobatto points with 
n = 6. The values for the continuous z solution are given in Tables 4.3 and 4.4. This solution 

gives the exact integration of Eq. (4.20), but is approximate due to spatial discretization errors. 

Figs. 4.15 and 4.16 show the spatial errors are 0.04% and 0.2% for average y and flux 

respectively at z = 0.01 and the solution 

is accurate to 6 or 7 digits at z = 0.10. 

The stepping solution converges to this 

solution when h → 0. The continuous z 

solution is plotted against the results 

from stepping with the Euler method.  

From Fig. 4.17, we see that the 

numerical solution looks fine with h = 

0.00208, but falls apart when h = 

0.00227. With this restriction, 

approximately 200 steps are required to 

integrate the solution to z = 0.4 and the 

error in the flux is approximately 0.7% at 

z = 0.1. It would be preferable if a more 

accurate solution could be achieved with 

fewer steps or fewer calculations. 

To gain a better understanding of the problem, look more closely at the simpler problem with n 
= 1. Eq. (4.21) reduces to the scalar equation: 

 𝑦𝑘+1 − 𝑦𝑘 = ℎ𝜆 𝑦𝑘 or 

𝑦𝑘+1 = (1 + ℎ𝜆) 𝑦𝑘 or 

𝑦𝑘+1 = (1 + ℎ𝜆)𝑘+1 

(4.22) 

λ is the negative real eigenvalue approximating the first eigenvalue of the infinite series 

analytical solution. Eq. (4.22) is a first term Taylor series approximation of the analytical 

solution e λz. After repeated steps the last line in Eq. (4.22) results. The quantity in parenthesis 

is call the amplification factor. The approximation will fail if |1 + ℎ𝜆| > 1 or ℎ > −2/𝜆. This 

failure mode is called numerical instability and due to the step size limit, the Euler method is 

conditionally stable. Numerical stability is completely separate and apart from the issue of 

truncation error. The eigenvalue for n = 1 is approximately -5 depending on the points 

selected, so there is not much of a restriction. However, for larger n, all of the eigenvalues 

must meet the restriction imposed by Eq. (4.22). For n = 6, the largest eigenvalue for Lobatto 

points in Table 4.3 gives the step size limit of h < 2/951 = 0.0021, which agrees with the 

computations shown in Fig. 4.17. Note too that the coefficient of the maximum eigenvalue in 

Table 4.4 is 8x10-6 which explains why it takes about 30 steps before the instability grows large 

enough to be visible in Fig. 4.17. The flux is more sensitive than the average, so it is the first to 

show signs of instability. 
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If we had selected the Radau-left points with n = 6, computation of a stable solution would 

require four times as many steps (see Table 4.3). If we use n = 8 (see Figs. 4.3 and 4.7), the 

number of steps required varies from 550 to 2600, which is clearly excessive. It is often 

assumed that larger steps can be taken when the solution is quiescent. This is not true. If small 

steps are used up to say z = 0.3 and then the step size is increased beyond the stability limit, 

the solution will become unstable soon after. There is no way around this limitation when using 

the Euler integration method or any method with conditional stability. 

For this example problem the eigenvalues are all real and negative. If the problem were one 

with complex eigenvalues, the condition would still apply. For example given a complex 

eigenvalue, 𝜆 =  𝜆𝑟 + 𝑖 𝜆𝑖: 

  |1 + ℎ(𝜆𝑟 + 𝑖 𝜆𝑖)| < 1  or 

√(1 + ℎ𝜆𝑟)2 + (ℎ𝜆𝑖)2 < 1 
(4.23) 

This is often represented as a circle in the complex plane having radius of unity and a center at 

(-1,0). Stability maps of other conditionally stable integration methods can be represented in a 

similar manner and may be found in numerous locations [e.g. Hairer and Wanner (1996), 

Fornberg (1996), p. 197]  

Getting back to the example problem, the issue of stability can be eliminated by using the 

backward Euler method: 

 𝒚𝑘+1 − 𝒚𝑘 = ℎ 𝑭(𝒚𝑘+1, 𝑧𝑘+1)  or 

(
𝑾̂

ℎ
+ 𝑪̂)𝒚𝒌+𝟏 =

𝑾̂

ℎ
𝒚𝒌  

(4.24) 

Fig. 4.18 shows calculations with this method using larger steps than those in Fig. 4.17. The 

same linear stability analysis as was used for the forward Euler method leads to the following 

expression instead of Eq. (4.22): 

 
𝑦𝑘+1 = (

1

1 − ℎ𝜆
)

𝑘+1

 (4.25) 

The absolute value of the amplification factor in 

parenthesis must again be less than one. The 

stability map for this method covers all but a 

circle of radius one centered at (0,1). When a 

method is stable for all eigenvalues with a 

negative real part, it is called absolutely stable or 

A-stable, so the backward Euler method is A-

stable. One problem with this method is, like the 

forward Euler method, it is only correct to O(h), 

so the results with the larger step size in Fig. 

4.18 give a flux error of about 7% at z = 0.10.  z
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The other problem with the backward Euler method is that it requires solving a set of algebraic 

equations to advance the solution in z. This type of method is called implicit. In contrast, the 

forward Euler method is called explicit because there are no unknowns on the right-hand side 

of Eq. (4.21). This issue is not so important for our simple linear example problem because we 

can factor the matrix 𝑾̂/ℎ + 𝑪̂ initially and when the step size changes. Then at each step, 

solution of the matrix problem requires only a forward elimination and back substitution of the 

right-hand side, which requires O(2n2) calculations, the same as a matrix multiply.  

Chebyshev points can employ fast Fourier transforms (FFT) to perform explicit calculations. 

With this approach, time steps require calculation of O[(n)log(n)], whereas a matrix-vector 

multiply requires O(n2), so this method is especially useful when explicit-like methods can be 

used for problems requiring large n ≳ 40. This method is not considered here, but is discussed 

in several of the references [e.g. Canuto, et al. (1988), Trefethen (2000)). 

Although the example is a small linear problem, some of the tradeoffs apply to larger nonlinear 

ones. Factoring a matrix requires O(2n3/3) flops for a general matrix and O(n3/3) flops for a 

symmetric one. The weak formulation, Eq. (4.9), gives a symmetric matrix problem for all but 

Chebyshev points. A forward and back solve is O(2n2) flops, the same count as for a matrix-

vector multiply required for the explicit forward Euler method. The ratio for a symmetric matrix 

factorization and solve relative to a solve alone is O((n+8)/6)) or about 3 for n = 10. For 

efficiency one would want to minimize the calculations associated with factorizations by 

selecting a method which produces symmetric matrices. If step sizes are changed, the step 

size selection logic should consider the added calculations of the factorization when the step 

size is changed. For nonlinear problems solved by a Newton-Raphson iteration, the matrix 

problem is constructed using the Jacobian from the linearization. In many cases the Jacobian 

does not need to be updated and factored every step. Depending on the specific problem, 

other tradeoffs will likely be at play. For a highly nonlinear problem requiring frequent Jacobian 

updates and several nonlinear iterations per step, an implicit method requires substantially 

more work for each step. One must weigh the extra calculations per step versus smaller 

explicit steps. 

For greater accuracy, the trapezoidal rule or Crank-Nicolson method. It has accuracy of O(h2) 

so it achieve greater accuracy than the Euler methods. With this method each step requires 

solution of: 

 
𝒚𝑘+1 − 𝒚𝑘 =

ℎ

2
 [𝑭(𝒚𝑘+1, 𝑧𝑘+1) + 𝑭(𝒚𝑘, 𝑧𝑘)]    or 

(
 2𝑾̂

ℎ
+ 𝑪̂) (𝒚𝑘+1 − 𝐲k) = −2 𝑪̂𝒚𝒌   or 

(
 2𝑾̂

ℎ
+ 𝑪̂) (𝒚𝑘+1 + 𝐲k) =  

 4𝑾̂

ℎ
𝒚𝒌 

(4.26) 
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Two arrangements are listed in Eq. (4.26). Both require a matrix solve. The first also requires a 

matrix-vector multiply, but may be less susceptible to roundoff errors. 𝑾̂ is diagonal, so the 

second formulation saves some 

calculations by not requiring a full 

matrix-vector multiply.  Nevertheless, for 

a more typical nonlinear problem, the 

calculations per step are similar for the 

Trapezoidal rule and backward Euler 

methods. Fig. 4.19 shows calculated 

results with this method using the same 

step sizes as used for the calculations 

shown in Fig. 4.18. This method gives 

good results for the smaller steps, but 

with the larger ones the error at small z 

is worse than with the backward Euler 

method.  

To understand what is going on with Fig. 4.19, the same linear stability analysis as above 

gives the following result for the trapezoidal rule: 

 
𝑦𝑘+1 = (

2 + ℎ𝜆

2 − ℎ𝜆
)

𝑘+1

 (4.27) 

The amplification factor has an absolute value less than one for all eigenvalues with a negative 

real part (like backward Euler), so it is A-stable. However, it has a completely different 

character for large hλ. For the backward Euler method the amplification factor goes to zero in 

the limit, while for the trapezoidal rule it goes to -1. The trapezoidal rule is stable in the sense 

that instabilities will eventually die out, but it does so in an oscillatory fashion. This behavior is 

evident in Fig. 4.19. Since the true solution, e λz, goes to zero for large z, the backward Euler 

method gives a better approximation of this behavior.  

When the amplification factor goes to zero as hλ → -∞ the method is called L-stable. For the 

example problem, at the end of the first step of 0.02 in Fig 4.19, the three terms with the 

largest eigenvalues (see Tables 4.3 and 4.4) contribute only 0.02% to 𝑦̅ and 0.7% to the flux, 

so they could easily be approximated by zero with little loss of accuracy. 

Stiffness 

Collocation methods or other MWR for this problem with large n produce systems of equation 

that are called stiff. There is no single, universally accepted definition of what constitutes a stiff 

set of equations. One definition is based on the ratio of the largest to the smallest eigenvalue. 

For the example problem with n = 6, Table 4.3 shows this ratio varies from 185 to almost 600, 

excluding the Galerkin method for which it is over 4,000. For very large n, the ratio increases 

in proportion to n6. Fortunately, n = 6 is good enough to give spatial errors of 0.04% and 0.2% 
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for 𝑦̅ and flux, respectively, even at z = 0.01 and 6 or 7 digit accuracy at z = 0.10, so 

calculations with extremely large n are not normally needed. 

Basically, stiff problems are ones with greatly different time (z in our case) scales. Usually, but 

not always, we are interested in the longest time scale. For this example, there are different 

time scales within the same problem. For coupled systems of differential equations, the 

variation can be more extreme. One example is an automotive catalytic converter and many 

other chemical reactor models. The models are coupled heat and mass transfer problems and 

both the fluid and solid must be modeled. The transient warm up response is very important 

since federal test cycles use a cold start. The response is governed almost exclusively by the 

thermal response of the solid material. Rapid warmup was improved by the development of 

honeycomb-like monolith substrates. One can set the time derivatives to zero in all equations 

except the energy balance for the solid (pseudo-steady assumption). A small coefficient of a 

time derivative term is equivalent to a large hλ, so an L-stable method, like the backward Euler, 

yields a pseudo-steady approximation automatically. For example, when h → ∞ Eq. (4.24) 

reduces to the pseudo-steady approximation, i.e.: 

 𝑭(𝒚𝑘+1, 𝑧𝑘+1) = 0  (4.28) 

Another example of a stiff problem comes from flow in porous media, such as salt water 

intrusion into coastal aquifers or water influx into oil reservoirs. Due to the low liquid 

compressibility, pressure and flow field changes usually occur in a matter of hours or days, 

while composition changes or fluid bank movement requires months or years. Some tests of oil 

or water wells monitor pressure changes over hours or days, so fluid movement is minimal. 

Well test problems are not stiff because only the rapidly changing time scale is of interest. 

These pressure transient problems illustrate that the ratio of largest to smallest eigenvalue is 

not an adequate way to define stiffness – the time scale of interest also is important. 

The point of these examples is that stiff problems abound in real life, especially for problems 

governed by coupled systems of differential equations. 

All three of the methods tried so far have difficulties with either accuracy (truncation error) or 

stability. There are two families of methods that go beyond these basic methods. These are 

called (1) multistep (MS) methods and (2) Runge-Kutta (RK) methods. The methods used so 

far involve conditions only at the beginning and end of one step and one operation is required 

to advance to the next step. Multistep methods use information from earlier steps. Runge-Kutta 

methods involve no information at earlier steps, but instead use a series of stage calculations 

to advance to the end of the step. These methods are described briefly. For a more complete 

discussion of methods for stiff problems, see Hairer and Wanner (1996) 

Runge-Kutta Methods 

Runge-Kutta methods are one of the most popular families of methods for solving initial value 

problems. The most familiar ones are explicit, like the forward Euler method. In fact, the 

forward Euler may be considered the first member of the Runge-Kutta family. The higher order 

RK methods use multiple stages for each step. These methods are of the form: 



[205] 

 

  

 𝒇𝑖 = 𝑭(𝒚𝑘 + ℎ(∑ 𝑎𝑖𝑗𝒇𝑗
𝑛𝑠
𝑗=1 ),  𝑧𝑘 + 𝑐𝑖ℎ)  for  𝑖 = 1, . . , 𝑛𝑠  

 𝒚𝑘+1 = 𝒚𝑘 +  ℎ ∑𝑏𝑖

𝑛𝑠

𝑖=1

𝒇𝑖 
(4.29) 

where ns is the number of stages. There are three basic classes of Runge-Kutta methods: 

1. Classic explicit methods, 𝑎𝑖𝑗 = 0 for 𝑗 ≥ 𝑖 

2. Diagonally implicit methods (DIRK), 𝑎𝑖𝑗 = 0 for 𝑗 > 𝑖 

3. General implicit methods 

Further subdivision can be made based on additional characteristics of the parameters, a, b 

and c. The general implicit methods include recognizable names like Gauss, Radau and 

Lobatto. These methods are not only implicit but require the solution of several implicit stages 

simultaneously. Simplifications can be made if a single linearization of the equations can be 

used throughout the step. The DIRK methods are attractive because they require only one 

level of implicitness at each stage.  

The most familiar Runge-Kutta methods are the explicit ones. There are a range of 2-stage 

second order explicit methods of the form: 

 
𝒚𝑘+1 − 𝒚𝑘 = ℎ [(1 − 𝜃)𝑭(𝒚𝑘, 𝑧𝑘) + 𝜃𝑭 (𝒚𝑘 +

ℎ

2𝜃
𝑭(𝒚𝑘, 𝑧𝑘), 𝑧𝑘 +

ℎ

2𝜃
) +] (4.30) 

Any value of θ will give a second order method. The two most popular choices are θ = 1, the 

modified Euler method, which approximates the midpoint rule and θ = ½, the improved Euler or 

Heun’s method, which approximates the trapezoidal rule. 

A popular explicit third order Runge-Kutta method is: 

 𝒇1 = 𝑭(𝒚𝑘, 𝑧𝑘)  

𝒇2 = 𝑭(𝒚𝑘 +
ℎ

2
𝒇1,  𝑧

𝑘 +
ℎ

2
)  

 𝒇3 = 𝑭(𝒚𝑘 − ℎ𝒇1 + 2ℎ𝒇2,  𝑧
𝑘 + ℎ) 

 𝒚𝑘+1 = 𝒚𝑘 +  ℎ(𝒇1 + 4𝒇2 + 𝒇3)/6 

(4.31) 

It has the same weights as Simpson’s rule. Simpson’s rule is fourth order, but since the results 

at stage 2 and 3 are only 
Table 4.7 

2nd Order Eq. (4.30) 

0 0 0 
1

2𝜃
 

1

2𝜃
 0 

 1 − 𝜃 𝜃 
 

Table 4.8 
3rd Order Eq. (4.31) 

0 0 0 0 
½ ½ 0 0 
1 -1 2 0 
 1/6 2/3 1/6 

 

 

Table 4.6 
Butcher Tableau 

c1 a11 a12 a13 a14 

c2 a21 a22 a23 a24 

c3 a31 a32 a33 a34 
c4 a41 a42 a43 a44 
 b1 b2 b3 b4 
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approximate, this three stage RK method is third order. The classic fourth order RK method 

also approximates Simpson’s rule, but an additional stage gives a refined estimate of the 

middle point to achieve the same convergence order as Simpson’s rule. 

The parameters for these methods are frequently represented using a Butcher tableau. The 

tableau for a generic four stage method is shown in Table 4.6, while the tableaus are listed for 

the explicit methods of second order and third order, in Tables 4.7 and 4.8, respectively. 

Fig. 4.20 shows calculations using a 2nd 

order Runge-Kutta method, the 

improved Euler or Heun’s method, 

which corresponds to θ = ½ in Eq. 

(4.30) and Table 4.7. This method 

improves on the accuracy of the Euler 

method, and in fact is almost as 

accurate as the trapezoidal rule which it 

approximates. However, it has exactly 

the same stable step size restriction as 

the forward Euler method, i.e. h < -2/λ. 

The 3rd and 4th order explicit Runge-

Kutta methods have stability limits of h 

< -2.51/λ and h < -2.79/λ for real 

eigenvalues, respectively. There is only a small increase in the stability limit for a substantial 

increase in calculation effort. Since the calculations required for these methods are 

proportional to the number of stages, the relative efficiency for stiff problems is given by 

normalizing the stability limit by the number of stages. The normalized stability limit is 2, 1, 

0.84 and 0.70 for 1st through 4th order, respectively. These methods are unsuitable for stiff 

problems. The first order Euler method is not accurate enough and the others have serious 

step size restrictions. Greater implicitness is required. 

For problems like this example and many others with large n, A-stable and L-stable methods 

are needed. Implicit Runge-Kutta methods are a class of methods to consider. Of these, the 

diagonal implicit methods (DIRK) are most attractive, since they do not require the implicit 

solution of several stages simultaneously. There are hundreds of these methods, which are 

nicely summarized and tested by Kennedy and Carpenter (2016). There are several 

subcategories of DIRK methods. When all diagonal entries in the tableau are equal, the 

method is called singly diagonally implicit (SDIRK). If the first stage is explicit, it is called an 

EDIRK method. If the first stage is explicit and the others have the same diagonal, it is 

designated an ESDIRK method. A few simple 2nd and 3rd order methods of this type are 

considered, but the computer codes are written for a general tableau, so other methods can be 

added easily. 

Tables 4.9 and 4.10 give the tableaus for two 2nd order methods, a 2 stage SDIRK method and 

a 3 stage ESDIRK method. The parameters are given to 5 digits in the tables, but more 
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accurate values are 

contained in Kennedy 

and Carpenter (2016, pp 

71-72) and in the 

example codes. The 

diagonal in both these 

methods is (2 − √2)/2. It is possible to achieve 3rd order accuracy and A-stability with the 

same number of stages. However, to also achieve L-stability with 2 implicit stages the order 

falls to 2nd order. These two methods are quite similar. Both may be viewed as starting with an 

initially step of 0.5858h. The method in Table 4.9 uses a midpoint rule for the first step, while 

the one in Table 4.10 uses a trapezoidal rule initially. The last step achieves the L-stable 

property while retaining 2nd order accuracy. For our linear example problem with constant 

coefficients the trapezoidal rule and midpoint rule are identical, so these two methods produce 

identical results.  

Implementing a DIRK method for our example problem requires at each implicit stage the 

solution of: 

  (
 𝑾̂

𝑎̃𝑖𝑖
+ 𝑪̂) (𝒚𝑖−1 + 𝑎̃𝑖𝑖𝒇𝑖)  =  (

 𝑾̂

𝑎̃𝑖𝑖
)𝒚𝑖−1 (4.32) 

where: 𝒚𝑖−1 = 𝒚𝑘 + ∑ 𝑎̃𝑖𝑗𝒇𝑗
𝑖−1
𝑗=1  and 𝑎̃𝑖𝑗 =

ℎ𝑎𝑖𝑗. Fig. 4.21 shows the calculated results 

with either of the methods in Tables 4.9 or 

4.10. These methods show some overshoot 

on the first step, but this step is quite large 

given the large gradients at small z. They 

quickly recover and show excellent 

accuracy and overall behavior, far superior 

to the results shown in Fig. 4.19 calculated 

with the trapezoidal rule. 

Calculations were also performed using the 

two third order methods shown in Tables 

4.11 and 4.12. These methods are described by Kennedy and Carpenter (2016, pp.77-81). 

Both methods are L-stable. The first is an SDIRK method with three stages and the second is 

Table 4.9 
2nd Order Implicit (SDIRK) 
0.29289 0.29289 0 
1.00000 0.70711 0.29289 

 0.70711 0.29289 
 

Table 4.10 
2nd Order Implicit (ESDIRK) 

0 0 0 0 
0.58579 0.29289 0.29289 0 
1.00000 0.35355 0.35355 0.29289 

 0.35355 0.35355 0.29289 
 

Table 4.11 
3rd Order Implicit (SDIRK) 

0.43587 0.43587 0 0 
0.71793 0.28207 0.43587 0 
1.00000 1.20850 -0.64436 0.43587 

 1.20850 -0.64436 0.43587 
 

Table 4.12 
3rd Order Implicit (ESDIRK) 

0 0 0 0 0 0 
0.45000 0.22500 0.22500 0 0 0 
0.76820 0.27160 0.27160 0.22500 0 0 
0.60000 0.22374 0.22374 -0.07249 0.22500 0 
1.00000 0.17555 0.17555 -0.34686 0.77077 0.22500 

 0.17555 0.17555 -0.34686 0.77077 0.22500 
 

z

A
v
e

ra
g

e
y

F
lu

x
0 0.02 0.04 0.06 0.08 0.1

0.4

0.6

0.8

1

0

4

8

12

16

20

24

Exact
SDIRK 2nd order 0.00500
SDIRK 2nd order 0.01000
SDIRK 2nd order 0.02000

Fig. 4.21 y and flux, Lobatto n = 6, 2
nd

order implicit R-K



[208] 

 

an ESDIRK method with an explicit first stage followed by four implicit stages. An L-stable 

ESDIRK with three implicit stages has also been formulated, and for our test problem it 

produces identical results to the method in Table 4.11. Figs. 4.22 and 4.23 shows results 

calculated with these methods. Both methods are well behaved and accurate, but they require 

substantial calculations per step. They are accurate enough with the large steps that additional 

values are needed for points within the step rather than using the linear representation 

depicted in the figures. This is called dense output and many of the implicit Runge-Kutta 

methods give interpolation formulas for calculating intermediate values of the solution. 

Multistep methods 

Multistep methods are another popular family of methods for solving initial value problems. 

They are of the form: 

 

𝑦𝑘+1 = ∑ 𝛼𝑗𝒚
𝑗

𝑘

𝑗=𝑘−𝑛𝑏

+ ∑ ℎ 𝛽𝑗𝑭(𝒚𝑗 , 𝑧𝑗)

𝑘+1

𝑗=𝑘−𝑛𝑏

 (4.33) 

Where nb is the number of conditions considered from earlier steps. The methods we will 

consider are the classic Adams-Bashforth and Adams-Moulton methods, along with higher 

order backward difference methods. These methods have issues with starting and step size 

changes. Starting can be accomplished using one of the single step methods, e.g. an implicit 

RK method. For a constant step size, the parameters of Eq. (4.33) for these methods are given 

in Table 4.13 together with those for the Euler, backward Euler and trapezoidal rule. For the 

Adams methods, the parameters are interpolatory quadrature weights, while for the backward 

difference methods they are differentiation matrix values. Chapter 2 describes methods for 

calculating such quantities, so the calculations could easily be adapted to calculate the 

coefficients for multistep methods with a variable step size.  

In addition to the parameter values, Table 4.13 lists basic stability properties. For conditionally 

stable methods, parameter a is listed in the condition h < -a/λ for real eigenvalues. A-stable 
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methods are so designated. The 3rd order backward difference method is listed as A(α)-stable. 

This is yet another method for describing stability and indicates the method is stable for all 

eigenvalues that fall within an angle ±α of the negative real axis. For the 3rd order backward 

difference method α = 86.03o, so it is A-stable for practical purposes. Since it is not quite A-

stable, it does not meet the formal definition for L-stability. However, a yes with an asterisk is 

used since it reduces to a pseudo-steady approximation, Eq. (4.28), when the steps are large 

relative to the coefficients of the z derivatives. The only methods with attractive stability 

properties are the backward difference methods. The only other method which comes close to 

meeting our stability requirements is the 3rd order Adams-Moulton. Although the stability limit is 

three times that of Euler method, it is still a limiting factor and the method is not L-stable, so it 

does not make the cut. 

Table 4.13 Multistep Methods 

Method 
α values β values 

Stability L-stable 
k k-1 k-2 k+1 k k-1 k-2 

Euler 1 0 0 0 1 0 0 2 no 

Backward Euler 1 0 0 1 0 0 0 A-stable yes 

Trapezoidal Rule 1 0 0 
1

2
 

1

2
 0 0 A-stable no 

2nd Order Adams-Bashforth 1 0 0 0 
3

2
 

−1

2
 0 1 no 

3rd Order Adams-Bashforth 1 0 0 0 
23

12
 

−4

3
 

5

12
 0.545 no 

3rd Order Adams-Moulton 1 0 0 
5

12
 

2

3
 

−1

12
 0 6 no 

4th Order Adams-Moulton 1 0 0 
3

8
 

19

24
 

−5

24
 

1

24
 3 no 

2nd Order Backward Difference 
4

3
 

−1

3
 0 

2

3
 0 0 0 A-stable yes 

3rd Order Backward Difference 
18

11
 

−9

11
 

2

11
 

6

11
 0 0 0 A(α)-stable yes* 

 

z

A
v
e

ra
g

e
y

F
lu

x

0 0.02 0.04 0.06 0.08 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

0

4

8

12

16

20

24

Exact
2nd Order Bkwd 0.00500
2nd Order Bkwd 0.01000
2nd Order Bkwd 0.02000

Fig. 4.24 y and flux, Lobatto n = 6, 2
nd

Order Backward
z

A
v
e

ra
g

e
y

F
lu

x

0 0.02 0.04 0.06 0.08 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

0

4

8

12

16

20

24

Exact
3rd Order Bkwd 0.00500
3rd Order Bkwd 0.01000
3rd Order Bkwd 0.02000

Fig. 4.25 y and flux, Lobatto n = 6, 3
rd

order backward diff.



[210] 

 

The only multistep methods tested were the 2nd and 3rd order backward difference methods, 

which were started by the SDIRK methods in Tables 4.9 and 4.11, respectively. The 

calculations with these methods are shown in Figs. 4.24 and 4.25. The overall behavior and 

accuracy of these methods is very good, especially considering they require essentially the 

same calculation effort as the backward Euler method. However, the most difficult part of the 

example problem are the first one or two steps which were computed by the more accurate 

and calculation intensive SDIRK methods. We will have to reserve judgement on these 

methods until further testing is done. 

Comparison of Methods 

So far, we have only made general qualitative comments about the accuracy of the various 

methods. Fig. 4.26 plots the error in the flux at z = 0.10 vs the step size on a log-log scale. For 

small h, the first order (red), 2nd order 

(blue) and 3rd order (green) methods 

settle at a slope equal to their order. The 

slope for the forward Euler and improved 

Euler methods go vertical at h = 0.021 

where they become unstable. The other 

methods deviate from their asymptotic 

behavior at larger step sizes. Kennedy 

and Carpenter describe a 

“superconvergence-like” behavior of the 

3rd order ESDIRK method, which is 

evident from h = 0.010 to 0.033 where 

the error drops precipitously, by almost 5 

orders of magnitude. 

It is difficult to compare the methods based on Fig. 4.26 alone. For example, the trapezoidal 

rule (see Fig. 4.19) exhibits unacceptable behavior for the first few steps when h > 0.005.  

However, the oscillations damp out, so the unacceptable behavior does not show up in Fig. 

4.26. Also, some of the methods, e.g. backward difference methods, require little work per step 

while others require considerably more effort for each step, e.g. the ESDIRK in Table 4.12. 

Table 4.14 Flux Error at z = 0.1 and Work Summary 

 
Step Size for Error Work 

per step 

Work for Error 

1.00% 0.10% 0.01% 1.00% 0.10% 0.01% 

Forward Euler ** 0.0003 0.00003 1 ** 1434 14415 
Backward Euler 0.003 0.0003 0.00003 1 147 1443 14361 
Improved Euler ** ** 0.00159 1 ** ** 252 
Trapezoidal Rule 0.013 0.0079 0.00245 1 32 51 163 
2nd Order Backward 0.011 0.0038 0.00121 1 35 107 331 
2nd Order SDIRK 0.027 0.0111 0.00349 2 30 72 229 
3rd Order Backward 0.019 0.0076 0.00358 1 21 52 112 
3rd Order SDIRK 0.032 0.0186 0.00843 3 37 64 142 
3rd Order ESDIRK 0.030 0.0239 0.02008 4 53 67 80 
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This simple linear problem is not an ideal one for comparing methods, but in an effort to gain 

as much insight as possible, the results are summarized in Table 4.14. The table gives the 

step size needed for a given accuracy, and then combines that with a work per step estimate. 

For a more typical nonlinear problem, the work per step for an implicit method will be many 

times that for an explicit one. Since most of the methods are implicit, perhaps this issue does 

not skew the comparison. One can always modify the values in the work per step column if 

other numbers are preferred.  

Table 4.14 seems to adequately isolate some of the better methods for further consideration. 

The results show the usual trend that a greater required accuracy favors higher order methods 

and there is a large improvement of 2nd order methods over 1st order ones. The 3rd order 

backward difference method comes out surprisingly good, because it works reasonably well 

and requires little work per step. However, keep in mind that it is started with the 3rd order 

SDIRK method, so for h = 0.02 over 70% of the implicit solves are during the two startup steps. 

Nevertheless, it shows to be a competitive method even when the accuracy requirements are 

greater and startup has less influence. The trapezoidal rule appears to be surprisingly 

competitive. Its truncation error coefficient is half that of the 2nd order backward difference 

method, so the backward difference method will be better only for problems more stiff than the 

example. The 3rd order DIRK methods do quite well considering the amount of work required 

per step. They generate accurate solutions with only 4 or 5 steps to reach z = 0.10. All of these 

results were generated using a constant step size, while the example would benefit from small 

steps initially followed by an increasing step size. 

This problem shows how to accurately apply the orthogonal collocation or pseudo spectral 

method to a parabolic problem and demonstrates how to solve the resulting coupled set of 

ordinary differential equations. The coupled ODEs are solved both analytically and by various 

numerical methods. Although the example is a simple linear problem, it clearly shows some of 

the issues and tradeoffs that are characteristics of these problems. We hope to follow this 

simple linear example by more complicated nonlinear ones. The investigation of other 

numerical stepping methods would also be of interest.
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5. Hyperbolic Problems – The Wave Equation 
In this chapter hyperbolic problems are treated with global methods. 

Specifically, we examine the damped wave equation in the context of a model of an 

automotive valve train. 
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6. Finite Elements in One Dimension 
Previous chapters have covered all the basic types of differential equations with global trial 

functions, this chapter extends the methods to trial functions that are piecewise continuous. 

This approach is better known as a finite element method, but the names spectral element 

method and differential quadrature element method are used also. The extension to finite 

elements is conceptually simple. However, one must keep track of points within elements 

which requires more complex bookkeeping. 

Fig. 1.3 shows an example of a one dimensional finite element grid composed of simple 

piecewise linear trial functions. A grid is constructed by first defining the element boundary 

nodes:  

 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑘 < ⋯ < 𝑥𝑛𝑒
 (6.1) 

Then the size of each element is defined by Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1, for k = 1,…,ne. Within each 

element a local coordinate is used, 𝜉 = (𝑥 − 𝑥𝑘−1)/Δ𝑥𝑘. Internal nodes are usually at 

polynomial roots or quadrature points, ξi, so a node i in element k is given by 𝑥𝑖𝑘 = 𝑥𝑘−1 +

Δ𝑥𝑘𝜉𝑖 for i = 0,…,n + 1. The double and single subscript notation are related by 𝑥𝑘 = 𝑥𝑛+1,𝑘 =

𝑥0,𝑘+1. This subscript notation will be used throughout this chapter, i.e. a single subscript on x 

or y denotes the number of an element interface while a double subscript denotes a point 

within an element. 

The element interfaces are like internal boundaries. For a second order differential equation, 

the conditions at the element interfaces are: 

 𝑦(𝑥𝑛+1,𝑘) = 𝑦(𝑥0,𝑘+1)  

𝑑𝑦

𝑑𝑥
|
𝑥𝑛+1,𝑘

=
𝑑𝑦

𝑑𝑥
|
𝑥0,𝑘+1

 
(6.2) 

If one thinks in terms of heat transfer, the second condition requires the flux to be continuous. 

The following shows how finite element methods follow naturally from the global methods 

studied in the previous chapters. 

6.1 Finite Element Trial and Weight Functions 

Several types of finite element trial functions are possible. In finite element literature they are 

traditionally called shape functions. If one is solving for displacements of a structure, the shape 

functions literally dictate the contour of the solution. In one dimension, trial functions differ by 

the degree of the polynomial and the continuity imposed at the element interface nodes. 

Regarding continuity, the first requirement is that the weighted residual must be integrable. If 

applied in strong form, like Eq. (1.9), first derivatives must be continuous or C1, but weight 

functions can be discontinuous or C-1. If the Galerkin method is applied in weak form, like Eq. 

(1.10) or (3.22), then only simple C0 continuity is required for both the trial function and weight 

function. For the Galerkin method, the continuity of the derivatives can be weakly imposed by 

treating them as natural boundary conditions.  
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The simplest C0 elements are the piecewise linear functions shown in Fig. 1.3. These are the 

most common shape functions. Fig. 6.1 shows the linear functions together with higher order 

C0 functions. The functions within each element are Lagrange polynomials and the nodes are 

located at quadrature points. In this example, the nodes are at Lobatto points. The functions at 

the element interfaces span two elements, while those associated with internal nodes are 

contained within one element. 

Other degrees of continuity have been used ranging from spline functions to discontinuous, C-1, 

functions. We will consider the C0 trial functions in Fig. 6.1 and functions which are C1. The 

strong enforcement of the derivative condition of Eq. (6.2) can be achieved using the C0 shape 

functions together with side conditions or automatically by using C1 functions with built-in 

continuity.  

 

Fig. 6.1 Finite element trial or shape functions, C0 continuity 

0 0.2 0.4 0.6 0.8 1

Eight C
0

Linear Finite Elements

element 4
element

1 element 3
element

2 element 8element 5 element 6 element 7

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Six C
o

quadratic finite element

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Five C
o

cubic finite element

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Four C
o

quartic finite elements



[215] 

 

The simplest trial functions with built-in C1 continuity are the cubic Hermite functions used in 

the first example problem of section 1.3, Eq. (1.23) [Hildebrand (1987), p. 282]. Section 2.8 

describes the extension of this approach to higher degree functions by interpolating the 

function and its derivative at the end nodes together with function values at internal nodes. 

With this approach, the solution is represented in local coordinates by: 

 
𝑦̃ =  ∑ℎ𝑖(𝜉)𝑦̃(𝜉𝑖)

𝑛

𝑖=1

+ ℎ̅0(𝜉)𝑦̃
′(0) + ℎ̅1(𝜉)𝑦̃

′(1) (6.3) 

Where ξ1 = 0 and ξn = 1. The degree of the polynomial is n + 1. The functions obey the 

conditions: ℎ𝑖(𝜉𝑗) = 𝛿𝑖𝑗, ℎ𝑖
′(1) = ℎ𝑖

′(0) = 0, and  ℎ̅𝑖(𝜉𝑗) = 0, ℎ̅0
′ (0) = ℎ̅1

′ (1) = 1, ℎ̅0
′ (1) = ℎ̅1

′ (0) =

0. The interior nodes are usually located at quadrature points to reduce interpolating 

requirements. Some examples of higher order C1 functions are displayed in Fig. 6.2. In Eq. 

(6.3) the derivative are with respect to ξ, but it is the derivatives with respect to x which are 

continuous. The functions must be scaled to account for variations in grid size. If there is a 

change in material properties, such as thermal conductivity, the scaling must take this into 

consideration also. In the figure the Δ𝑥ℎ̅ functions are scaled up as indicated. In these 

examples, the functions are constructed to ease the use Gaussian quadrature, so the internal 

 

Fig. 6.2 Element trial or shape functions with C1 continuity 
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nodes are located at Gauss points. With the Lagrange functions of Fig. 6.1, one would have 

nodes at all of the Gauss points. In these examples, the derivative conditions are substituted 

for the nodes nearest the boundary. When the derivatives are strongly enforced these trial 

functions reduce the size of the algebraic problem by ne – 1; however, some additional 

calculations are often needed for interpolation of some terms. 

If a strong treatment is used and the trial functions are C1, the weight functions can be 

discontinuous or C-1. Fig. 6.3 shows examples of discontinuous weight functions. This example 

uses Lagrange polynomials through Gauss points, so that simplification occur when Gaussian 

quadrature is used. Note, these functions meet at the element boundaries, but they are 

separate functions as indicated by the different line types in the figure. 

6.2 C1 Collocation and Method of Moments 

For global methods, we found that collocation works best when it approximates one of the 

integral-type MWR like the Galerkin method or method of moments. Here we demonstrate the 

extension to finite elements for the problem of section 3.1. The method of moments was 

treated in section 3.1.2. It uses a strong treatment of boundary conditions, including the 

element interface conditions. The strong treatment can be achieved using either the C0 

 

Fig. 6.3 Discontinuous C-1 weight functions 
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Lagrange functions of Fig. 6.1 together with side conditions or by using the functions of Eq. 

(6.3) with built-in C1 continuity like those in Fig. 6.2. In either case, the weight functions are 

discontinuous functions, like those in Fig. 6.3. The Lagrange approach is considered first. 

The method of moments is equivalent to the H1 Galerkin method [Douglas, et al. (1974)]. The 

H1 Galerkin method is not a Galerkin method in the classic sense, because it does not weight 

the residual by the trial functions. Instead, it uses trial functions which are C1 and weights the 

residual by the second derivative of the trial functions. The second derivatives of the trial 

functions are C-1 functions. The resulting approximation is equivalent to that produced by the 

weight functions in Fig. 6.3. However, the approach used here will produce a more compact 

approximation because the weights span only one element. The H1 Galerkin method is a 

classic method of moments as studied extensively by Kravchuk (see section 1.2.4 and 

Kravchuk (1926,1932), Lucka and Lucka (1992)). 

In the 1970s, the success of the FEM in structural mechanics lead to interest in other 

disciplines. When first applied to nonlinear and time dependent problems, conventional 

formulations were found to be computationally intensive due in part to the numerical 

quadratures. Collocation-like methods seemed like an obvious way to reduce computations. 

The first collocation FEM was collocation at Gauss points with early articles by DeBoor and 

Swartz (1973), Douglas and Dupont (1973), and Cary and Finlayson (1975). This method is an 

almost trivial extension of the global collocation methods described in earlier chapters. As we 

shall see, the method of moments or H1 Galerkin method is approximated by collocation at 

Gauss points. 

The residual weighting within each element is by the reduced Lagrange polynomials of Eq.  

(3.16) and Fig. 6.3, designated as ℓ*. These polynomials interpolate through interior quadrature 

points, Gauss points in this case. For our test problem, the method of moments gives: 

 1

Δ𝑥𝑘
∑ 𝑦𝑖𝑘 ∫ ℓ𝑗

∗ℓ𝑖
′′𝑑𝜉

1

0

𝑛+1

𝑖=0

+ Δ𝑥𝑘 ∫ ℓ𝑗
∗𝑟𝑘(𝑥, 𝑦̃)𝑑𝜉

1

0

=
𝑊𝑗

Δ𝑥𝑘
∑ 𝐵𝑗𝑖

𝑛+1

𝑖=0

𝑦𝑖𝑘 + Δ𝑥𝑘 ∫ ℓ𝑗
∗𝑟𝑘𝑑𝜉

1

0

= 0 (6.4) 

for j = 1,…,n and k = 1,…,ne, which is like Eq. (3.17) but scaled for an element k. The subscript 

on r indicates the integration is for values in element k. The differentiation matrix, B, is the 

same as before and W are the Gaussian quadrature weights. These equations at the interior 

points are combined with a strong treatment of the interface conditions, Eq. (6.2): 

 1

Δ𝑥𝑘
∑ 𝐴𝑛+1,𝑖𝑦𝑖𝑘

𝑛+1

𝑖=0

−
1

Δ𝑥𝑘+1
∑ 𝐴0,𝑖𝑦𝑖,𝑘+1

𝑛+1

𝑖=0

= 0 (6.5) 

A strong treatment of the external boundary conditions is used also:  

 1

Δ𝑥1
∑ 𝐴0,𝑖𝑦𝑖1

𝑛+1

𝑖=0

= 2𝐵𝑖0  𝑦01    and   −
1

Δ𝑥𝑛𝑒

∑ 𝐴𝑛+1,𝑖𝑦𝑖,𝑛𝑒

𝑛+1

𝑖=0

= 2𝐵𝑖1 𝑦𝑛+1,𝑛𝑒
 (6.6) 
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For a linear rate term, the full mass matrix produced from exact integration is given in section 

2.7 and used in section 3.1.2. Accurate integration of a nonlinear rate term is described in the 

next section, see Eq. (6.25). However, if the rate term is approximated with n point Gaussian 

quadrature, the equations simplify to: 

 𝑊𝑗

Δ𝑥𝑘
∑ 𝐵𝑗𝑖

𝑛+1

𝑖=0

𝑦𝑖𝑘 + Δ𝑥𝑘𝑊𝑗  𝑟(𝑥𝑗𝑘, 𝑦𝑗𝑘) = Δ𝑥𝑘𝑊𝑗𝑅𝑗𝑘 = 0 (6.7) 

for j = 1,…,n and k = 1,…,ne. R is the residual. This form reveals the method to be a 

collocation method since it is equivalent to setting the residual to zero. This equation is Eq. 

(3.10) or Eq. (3.18) after scaling for element size. This is like the form of the equations treated 

by Carey and Finlayson (1975); however, the scaling here gives a symmetric matrix problem. 

By substitution of the symmetric stiffness matrix C for A and WB, see Eq. (2.111), the matrix 

symmetry is evident.  

There are (n)ne equations at interior nodes, ne - 1 element interface conditions and 2 boundary 

conditions for a total of (n+1)ne+1 equations. This total does not count the trivial condition 

𝑦(𝑥𝑛+1,𝑘) = 𝑦(𝑥0,𝑘+1) which is handled by the labeling or numbering of the unknowns. The 

structure of the algebraic problem is shown in Fig. 6.4.  The n = 0 case is not applicable for the 

Linear functions, n = 0, ne = 12  Quadratic functions, n = 1, ne = 6 

x x             x x x           

x x x            x x x            
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       x x x           x x x x x   
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          x x x             x x x 
           x x            x x x 

Cubic functions, n = 2, ne = 4  Quartic functions, n = 3, ne = 3  
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x x x x x x x 
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Fig. 6.4 nonzero matrix structure for C0 trial functions 
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method of moments but is included in the figure for subsequent discussion. The equations can 

be viewed as either banded or block tridiagonal matrices. The band width is 2n+3. The 

maximum bandwidth occurs for the linear element interface condition. 

These equations would have identical form for collocation at Lobatto or Chebyshev points; 

however, from earlier chapters, we know the strong enforcement of the derivative conditions is 

good only for collocation at Gauss points or the method of moments. For other cases, a weak 

or natural boundary condition treatment should be used. 

Rather than using side conditions, trial functions with built-in C1 continuity, Eq. (6.3), can be 

used. To simplify the terminology, the trial functions are numbered from 0 to n+1 by 𝑯𝒌 =

 {ℎ1, Δ𝑥𝑘ℎ̅0, ℎ2, … , ℎ𝑛 , Δ𝑥𝑘ℎ̅1} and the parameters are correspondingly numbered 𝒂𝒌 =

{𝑦̃(𝑥𝑘−1), 𝑦̃
′(𝑥𝑘−1), 𝑦̃(𝑥2,𝑘),… , 𝑦̃(𝑥𝑛−1,𝑘), 𝑦̃(𝑥𝑘), 𝑦̃

′(𝑥𝑘)}. In ak, the derivatives are with respect to x 

not ξ, since it is those derivatives which are continuous. Some additional scaling of the 

derivatives may be desirable in some cases. Also, if there is a material change at the interface, 

such as diffusivity or thermal conductivity, the definition should incorporate the change to 

achieve continuity of flux. Using our notation, the singly subscripted parameters are the 

interface nodes and the internal nodes are at quadrature points, 𝑥𝑖𝑘 = 𝑥𝑘−1 + 𝜉𝑖Δ𝑥𝑘. The 

quadrature points are either Gauss or Lobatto points. Like in Fig. 6.2, the two closest to the 

element boundary, ξ1 and ξn, are not included as nodal points in the free parameters, ak.  

Application of the method of moments gives: 

 1

Δ𝑥𝑘
∑ 𝑎𝑖𝑘 ∫ ℓ𝑗

∗𝐻𝑘𝑖
′′ 𝑑𝜉

1

0

𝑛+1

𝑖=0

+ Δ𝑥𝑘 ∫ ℓ𝑗
∗𝑟𝑘𝑑𝜉

1

0

= 0 (6.8) 

for j = 1,…,n and k = 1,…ne. The integrand of the first term is degree 2n-2 and a linear rate 

term is degree 2n. If the integration is performed using quadrature, then: 

 
∑ 𝑊ℓℓ𝑗

∗(𝜉ℓ) [(∑ 𝐻𝑘𝑖
′′ (𝜉ℓ)

𝑎𝑖𝑘

Δ𝑥𝑘

𝑛+1

𝑖=0

) + Δ𝑥𝑘𝑟𝑘(𝑥(𝜉ℓ), 𝑦̃(𝜉ℓ))]

𝑚+1

ℓ=0

= 0 (6.9) 

Where the term in brackets is the residual evaluated at the quadrature points. The trial 

functions have n nodes with two on the element boundaries. None of the quadrature formulas 

give exact integration of the second derivative using only the values at the nodes. It should be 

possible to devise a quadrature scheme using the nodal values and the endpoint derivatives, 

but this would be cumbersome. We will consider Gauss and Lobatto quadrature with n interior 

points, which give accuracy of 2n-1 and 2n+1, respectively. Both are accurate enough to 

maintain the maximum convergence rate. For weight functions, we choose the Lagrange 

polynomials which interpolate through the interior quadrature points (see Fig. 6.3), while for the 

trial function nodal points we choose all but the two quadrature points nearest the boundary 

(see Fig. 6.2). With this integration scheme, Eq. (6.9) in terms of residuals is: 
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∑ 𝑊ℓℓ𝑗

∗(𝜉ℓ)𝑅(𝑥ℓ𝑘)

𝑚+1

ℓ=0

= 𝑊0ℓ𝑗
∗(0)𝑅(𝑥𝑘−1

+ ) + 𝑊𝑛+1ℓ𝑗
∗(1)𝑅(𝑥𝑘

−) + 𝑊𝑗𝑅(𝑥𝑗𝑘) = 0 (6.10) 

for j = 1,…,n. For the Gauss case, the first two terms are zero, so the method reverts to a 

collocation method. The residuals are not continuous, so superscript “-“ and “+” are used to 

designate the side of the discontinuity. Note, including the endpoints for Lobatto quadrature 

causes little difficulty and gives more accurate integrals, but in that case, the method cannot be 

viewed as a collocation method. Substituting the expression for the residual gives the following 

for element k: 

 
∑ 𝐶𝑗𝑖𝑘

𝑎𝑖𝑘

Δ𝑥𝑘

𝑛+1

𝑖=0

− Δ𝑥𝑘 ∑ 𝑊ℓℓ𝑗
∗(𝜉ℓ)𝑟(𝑥ℓ𝑘 , 𝑦̃(𝑥ℓ𝑘))

𝑚+1

ℓ=0

= 0 (6.11) 

Where a somewhat obscure stiffness matrix is formed by: 

 
𝐶𝑗𝑖𝑘 = − ∑ 𝑊ℓℓ𝑗

∗(𝜉ℓ)𝐻𝑘𝑖
′′ (𝜉ℓ)

𝑛+1

ℓ=0

= 𝑊0ℓ𝑗
∗(0)𝐻𝑘𝑖

′′ (0) + 𝑊𝑛+1ℓ𝑗
∗(1)𝐻𝑘𝑖

′′ (1) + 𝑊𝑗𝐻𝑘𝑖
′′ (𝜉𝑗) (6.12) 

for j = 1,…,n and i = 0,…,n+1. For a nonlinear rate term, the values are linearized about an 

initial guess or a result from a previous iteration: 

 
𝑟(𝑦̃(𝑥ℓ𝑘))  ≈ 𝑟𝑘(𝑦̃

0(𝑥ℓ𝑘)) + [𝑦̃(𝑥ℓ𝑘) − 𝑦̃0(𝑥ℓ𝑘)]
𝑑𝑟

𝑑𝑦
⌋
𝑦̃0(𝑥ℓ𝑘)

= 𝑟ℓ𝑘
0 + 𝑟ℓ𝑘

′ 𝑦̃(𝑥ℓ𝑘) (6.13) 

which will be referenced using the shorthand notation at the far right. The x dependence is 

omitted for convenience. It is usually better to formulate the problem in terms of the change, 

Δ𝑦ℓ𝑘 = 𝑦̃(𝑥ℓ𝑘) − 𝑦̃0(𝑥ℓ𝑘), but the derivation is simpler using 𝑦̃(𝑥ℓ𝑘) as unknowns. The rate term 

is: 

 
− ∑ 𝑊ℓℓ𝑗

∗(𝜉ℓ)𝑟(𝑦̃(𝑥ℓ𝑘))

𝑚+1

ℓ=0

= − ∑ 𝑊ℓℓ𝑗
∗(𝜉ℓ)(𝑟ℓ𝑘

0 + 𝑟ℓ𝑘
′ 𝑦̃(𝑥ℓ𝑘))

𝑚+1

ℓ=0

 

 = ∑ 𝑀𝑗𝑖𝑘𝑎𝑖𝑘

𝑛+1

𝑖=0

− 𝐺𝑗𝑘 

(6.14) 

where M and G are basically a mass matrix and load vector, respectively. The load vector is: 

 𝐺𝑗𝑘 = 𝑊0ℓ𝑗
∗(0)𝑟0,𝑘

0 + 𝑊𝑛+1ℓ𝑗
∗(1)𝑟𝑛+1,𝑘

0 + 𝑊𝑗𝑟𝑗𝑘
0    

The mass matrix is a little more complicated because some of the 𝑦̃(𝑥ℓ𝑘) terms must be 

interpolated. With our labeling of the unknowns 𝑦̃(𝑥0𝑘) = 𝑎0,𝑘, 𝑦̃(𝑥𝑛+1,𝑘) = 𝑎𝑛,𝑘 , and 𝑦̃(𝑥𝑗𝑘) =

𝑎𝑗𝑘  for 𝑗 = 2,… , 𝑛 − 1. 𝑦̃(𝑥1,𝑘) and 𝑦̃(𝑥𝑛,𝑘) are interpolated with Eq. (6.3), so they depend on all 

coefficients of the element. The mass matrix can be constructed from: 

 



[221] 

 

 
∑ 𝑊ℓℓ𝑗

∗(𝜉ℓ)𝑟𝑘ℓ
′ 𝑦̃(𝑥𝑘ℓ)

𝑚+1

ℓ=0

 

    = 𝑊0ℓ𝑗
∗(0)𝑟0,𝑘

′ 𝑎0,𝑘 + 𝑊𝑛+1ℓ𝑗
∗(1)𝑟𝑛+1,𝑘

′ 𝑎𝑛,𝑘 + 𝑊𝑗𝑟𝑗𝑘
′ 𝑎𝑗𝑘    for  𝑗 = 2, … , 𝑛 − 1 

= 𝑊0ℓ𝑗
∗(0)𝑟0,𝑘

′ 𝑎0,𝑘 + 𝑊𝑛+1ℓ𝑗
∗(1)𝑟𝑛+1,𝑘

′ 𝑎𝑛,𝑘 + 𝑊𝑗𝑟𝑗𝑘
′ ∑ 𝐻𝑘𝑖(𝜉𝑗)𝑎𝑖𝑘

𝑛+1

𝑖=0

  for 𝑗 = 1, 𝑛 

 = − ∑ 𝑀𝑗𝑖𝑘𝑎𝑖𝑘

𝑛+1

𝑖=0

 

(6.15) 

Unlike other cases, the mass matrix is not diagonal due the required interpolations, but it is 

sparse. The equations simplify further for the Gauss or collocation case since W0 = Wn+1 = 0, 

However, the Lobatto or moments case is only slightly more complicated and requires little 

additional calculation. With these definitions, Eq. (6.11) reduces to: 

 
∑ (

𝐶𝑗𝑖𝑘

Δ𝑥𝑘
+ Δ𝑥𝑘𝑀𝑗𝑖𝑘)

𝑛+1

𝑖=0

𝑎𝑖𝑘 = Δ𝑥𝑘𝐺𝑗𝑘  (6.16) 

where j = 1,…n in each element k = 1,…,ne.  

The conditions at the external boundaries are: 

 𝑦̃′(0) = 2𝐵𝑖0  𝑦̃(0)    and     − 𝑦̃′(1) = 2𝐵𝑖1𝑦̃(1)   or 

𝑎11 =  2𝐵𝑖0 𝑎01      and  − 𝑎𝑛+1,𝑛𝑒
= 2𝐵𝑖1𝑎𝑛,𝑛𝑒

 
(6.17) 

One of the boundary parameters is easily eliminated, so that only a single boundary unknown 

is required. At interface nodes, of course, the values and derivatives are continuous: 

  𝑎𝑛𝑘 = 𝑎0,𝑘+1   and  𝑎𝑛+1,𝑘 = 𝑎1,𝑘+1 (6.18) 

Cubic functions, n = 2, ne = 8   Quartic functions, n = 3, ne = 5 
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Fig. 6.5 Nonzero matrix structure for moments or collocation, C1 trial functions 
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The equal values are treated as single unknowns. With one unknown eliminated at each 

external boundary, we are left with (n)ne equations and unknowns. The nonzero matrix 

structure for these equations is illustrated in Fig.6.5. This matrix may also be viewed as a band 

matrix of width 2n + 1. Compared to the Lagrange approach, this formulation with C1 trial 

functions not only reduces the number of unknowns by approximately ne, but also reduces the 

band width by 2. In multidimensional problems the differences are more dramatic. Note also, 

the inclusion of the endpoint weights for Lobatto quadrature adds little complexity to the 

formulation.  

6.3 C0 Collocation and Galerkin Method 

The most common finite element procedures are based on a Galerkin method with C0 trial 

functions, like those of Fig. 6.1. Quadrature formulas are normally used to approximate the 

integrals. Early applications of FEM for nonlinear time dependent problems found the 

quadrature calculations computationally intensive. Collocation-like methods were an obvious 

way to reduce the computations. Several equivalent C0 collocation FEM were developed 

independently and given different names. First was the Hybrid-Collocation-Galerkin method 

[Diaz (1975,1977), Dunn and Wheeler (1976), Wheeler (1977)]. An alternative method was 

developed independently by three others [Gray (1977), Young (1977,1981), Hennart (1982)] 

and called the Lobatto-Galerkin method. These methods organize the equations differently. 

For years, they were thought to be different, but in fact they are equivalent [Young (2019)]. 

This later formulation was also developed by reformulating the Hybrid-Collocation-Galerkin 

method [Leyk (1986,1997)]. Still later, the method was rediscovered and popularized as the 

Spectral/hp Element method [Maday and Patera (1989), Karniadakis and Sherwin (2013)]. 

None of the earlier developments are cited in these or other spectral sources. It has also been 

called G-NI and SEM-NI (Galerkin or Spectral Element Method with Numerical Integration) 

[Canuto, et al. (2007)]. These last names are truly awful since the vast majority of FEM 

implementations use a Galerkin method with numerical integration. Rightfully, the method 

should be called the C0 Orthogonal Collocation Finite Element Method.  

With C0 trial functions the approximate solution is continuous, but its derivatives are 

discontinuous at interface nodes. The derivatives are continuous only in the limit of a fine grid, 

i.e. large n and/or ne. Integration of the method must consider the limited continuity of the trial 

functions. There are two approaches possible: (1) consider the interfaces as internal 

boundaries and treat the derivatives as natural boundary conditions, or (2) integrate the 

equations in their weak form, like Eq. (1.10) or (3.22). Both lead to the same result. 

If the first approach is applied to the problem of section 3.1. Eq. (3.22) applies directly after 

scaling for element size, so for an element k: 

 

∑ ℓ𝑗

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝜉
|
0

1 𝑦𝑖𝑘

Δ𝑥𝑘
 

− ∫ (∑
𝑑ℓ𝑗

𝑑𝜉

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝜉

𝑦𝑖𝑘

(Δ𝑥𝑘)2
− ℓ𝑗𝑟𝑘(𝑥, 𝑦̃))Δ𝑥𝑘𝑑𝜉

1

0

= 0 (6.19) 
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where the subscript on r indicates the integration is performed for values in element k. The first 

term is the flux at the boundaries. It simplifies and the second derivative term can be replaced 

by the same stiffness matrix used before, Eq. (2.111): 

 
𝛿𝑗,0

𝑑𝑦̃

𝑑𝑥
|
𝑥0,𝑘

− 𝛿𝑗,𝑛+1

𝑑𝑦̃

𝑑𝑥
|
𝑥𝑛+1,𝑘

+ ∑
𝐶𝑗𝑖

Δ𝑥𝑘
𝑦𝑖𝑘

𝑛+1

𝑖=0

− Δ𝑥𝑘 ∫ ℓ𝑗𝑟𝑘𝑑𝜉
1

0

= 0 (6.20) 

The first two terms are zero at internal nodes. At an external boundary, the treatment is like 

before, so for the first and last nodes: 

 
2𝐵𝑖0𝑦01 + ∑

𝐶0𝑖

Δ𝑥1

𝑛+1

𝑖=0

𝑦𝑖1 − Δ𝑥1 ∫ ℓ0𝑟1𝑑𝜉
1

0

= 0    and 

2𝐵𝑖1𝑦𝑛+1,𝑛𝑒
+ ∑

𝐶𝑛+1,𝑖

Δ𝑥𝑛𝑒

𝑦𝑖,𝑛𝑒

𝑛+1

𝑖=0

− Δ𝑥𝑛𝑒
∫ ℓ𝑛+1𝑟𝑛𝑒

𝑑𝜉
1

0

= 0  

(6.21) 

Which reduce to 𝑦01 = 𝑦𝑛+1,𝑛𝑒
= 0 when the Bi numbers are large.  

Eq. (6.2) applies at the interface of two elements. The condition 𝑦𝑛+1,𝑘 = 𝑦0,𝑘+1 is implemented 

by treating the two as a single unknown. Adding Eq. (6.20) for the nodes on each side of the 

interface produces:  

 
(
𝑑𝑦̃

𝑑𝑥
|
𝑥0,𝑘+1

−
𝑑𝑦̃

𝑑𝑥
|
𝑥𝑛+1,𝑘

) + ∑ (
𝐶𝑛+1,𝑖

Δ𝑥𝑘
𝑦𝑖𝑘 +

𝐶0𝑖

Δ𝑥𝑘+1
𝑦𝑖,𝑘+1)

𝑛+1

𝑖=0

 

−Δ𝑥𝑘 ∫ ℓ𝑛+1𝑟𝑘𝑑𝜉
1

0

− Δ𝑥𝑘+1 ∫ ℓ0𝑟𝑘+1𝑑𝜉
1

0

= 0 

(6.22) 

Where the first term in large parenthesis is the interface derivative condition. Using a natural 

treatment of the derivative conditions, this term is set to zero. The derivatives are not equal, 

but by setting the term to zero the procedure will force it to approximately zero. This procedure 

is no different from that used for the treatment of the conditions at external boundaries, see 

Section 3.1.3. With this natural treatment of the derivative condition, the approximation is: 

 
∑ (

𝐶𝑛+1,𝑖

Δ𝑥𝑘
𝑦𝑖𝑘 +

𝐶0𝑖

Δ𝑥𝑘+1
𝑦𝑖,𝑘+1)

𝑛+1

𝑖=0

− Δ𝑥𝑘 ∫ ℓ𝑛+1𝑟𝑘𝑑𝜉
1

0

− Δ𝑥𝑘+1 ∫ ℓ0𝑟𝑘+1𝑑𝜉
1

0

= 0 (6.23) 

As was the case for global trial functions, this approach treats the interface derivative condition 

as part of the approximation which is satisfied in the limit. 

If the second approach is used, i.e. direct application of the method in weak form (like Eq. 

(1.10)), the same result is produced. For interior points there is no contribution from 

neighboring elements, so Eq. (6.20) remains applicable. For the interface nodes, the weight 

functions span two elements and the integration is performed by adding the contribution from 

each element, so Eq. (6.23) results. 
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The rate term can be treated by the same procedures used for global methods: (1) 

approximated with Lobatto quadrature and n interior points, (2) approximation using 

quadrature with more than n quadrature points, or (3) interpolation into the trial space.  

The first approach is the simplest, since the rate term is approximated by ∫ ℓ𝑗𝑟𝑘𝑑𝜉
1

0
≈

𝑊𝑗𝑟(𝑥𝑗𝑘, 𝑦𝑗𝑘), so these terms appear only on the diagonal of the matrix. This approach and 

substitution of Eq. (2.111) or (3.20) into Eq. (6.20) reveals the approximation is equivalent to 

Eq. (6.7) at interior points, so the method is clearly a collocation method at internal nodes. The 

same substitution for the interface shows that Eq. (6.23) is equivalent to:  

 
(

1

Δ𝑥𝑘
∑ 𝐴𝑛+1,𝑖𝑦𝑖𝑘

𝑛+1

𝑖=0

−
1

Δ𝑥𝑘+1
∑ 𝐴0,𝑖𝑦𝑖,𝑘+1

𝑛+1

𝑖=0

) − Δ𝑥𝑘𝑊𝑛+1𝑅𝑛+1,𝑘 + Δ𝑥𝑘+1𝑊0𝑅0,𝑘+1 = 0 (6.24) 

The first term, in large parenthesis, is the residual of the interface derivative or flux condition, 

Eq. (6.5), while R is the residual of the differential equation defined in Eq. (6.7). At the interface 

nodes this collocation method sets a combination of interior and boundary residuals to zero. All 

residuals converge to zero as the grid is refined. This relationship is like that for external 

boundaries with global methods, i.e. Eq. (3.30). In this form, the treatment can be viewed as a 

penalty method, like Eq. (1.15). 

If the rate term is nonlinear and a more accurate integration is desired, a procedure like that in 

section 3.1.5 can be used, i.e. approximate integration with m > n interior quadrature points. 

Results in Chapter 3 show that one or two additional quadrature points usually produces the 

smallest error. The error with m ≫ n is sometimes marginally less than with m = n + 1, but at 

other times the error can be larger.  

Given an initial guess or the result of a previous iteration, the rate term is approximated at the 

quadrature points by Eq. (6.13). Interpolations are required for all but the interface nodes, i.e. 

𝑦̃(𝑥ℓ𝑘) = ∑ ℓ𝑖(𝜉ℓ)𝑦𝑖𝑘
𝑛+1
𝑖=0 . Substitution of the linearized rate expression gives: 

 
Δ𝑥𝑘 ∫ ℓ𝑗𝑟𝑘𝑑𝜉

1

0

≈ Δ𝑥𝑘 ∑ 𝑊ℓℓ𝑗(𝜉ℓ)[𝑟ℓ𝑘
0 + 𝑟ℓ𝑘

′ 𝑦̃(𝑥ℓ𝑘)]

𝑚+1

ℓ=0

 

= Δ𝑥𝑘 ∑ 𝑊ℓℓ𝑗(𝜉ℓ)𝑟ℓ𝑘
0

𝑚+1

ℓ=0

− Δ𝑥𝑘 ∑ 𝑦𝑖𝑘

𝑛+1

𝑖=0

∑ 𝑊ℓℓ𝑗(𝜉ℓ)ℓ𝑖(𝜉ℓ)𝑟ℓ𝑘
′

𝑚+1

ℓ=0

 

=  Δ𝑥𝑘𝐺𝑗𝑘 −  Δ𝑥𝑘 ∑ 𝑀𝑗𝑖𝑘𝑦𝑖𝑘

𝑛+1

𝑖=0

 

(6.25) 

Rounding errors are usually reduced by solving for the change over an iteration, but this 

derivation is simpler. For the linear rate term, 𝑟 = 𝜑2(1 − 𝑦̃), M is the same for all elements. 

For this case, analytical integrals are derived in section 2.7:  
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𝑀𝑗𝑖 = 𝜑2 ∫ ℓ𝑗ℓ𝑖𝑑𝜉

1

0

= 𝜑2𝑀̂𝑗𝑖  

= 𝜑2
(−1)(𝑖+𝑗+1)

2𝑛 + 3
√𝑊𝑖𝑊𝑗    for 𝑖 ≠ 𝑗 

= 𝜑2
2(𝑛 + 1)

2𝑛 + 3
𝑊𝑖     for 𝑖 = 𝑗 

≈ 𝛿𝑗𝑖𝜑
2𝑊𝑖  

(6.26) 

Where the last equation is the approximation with m = n.  

Interpolation of the rate into the trial space was used in Chapter 3 for the variable coefficient 

problem, Eq. (3.32). With this approach, 𝑟𝑘 ≈ ∑ ℓ𝑖𝑟(𝑦𝑖𝑘)𝑛+1
𝑖=0 , so: 

 
Δ𝑥𝑘 ∫ ℓ𝑗𝑟𝑘𝑑𝜉

1

0

≈  Δ𝑥𝑘 ∑ 𝑟(𝑦𝑖𝑘)

𝑛+1

𝑖=0

∫ ℓ𝑗ℓ𝑖𝑑𝜉
1

0

= Δ𝑥𝑘 ∑ 𝑟(𝑦𝑖𝑘)

𝑛+1

𝑖=0

𝑀̂𝑗𝑖 (6.27) 

Where 𝑴̂ is the expression given in Eq. (6.26) for a linear rate function. 

This approach eliminates the interpolations but produces a nonsymmetric mass matrix. 

Regardless how the rate term is approximated, the method produces an algebraic problem 

with (n+1)ne+1 equations and unknowns. The matrix structure is identical to that for collocation 

at Gauss points or moments when implemented with C0 trial functions, Fig. 6.4.  

The case with linear functions, n = 0, is of special interest. The integrals are calculated with the 

trapezoidal rule. In this case a residual cannot even be calculated, but the method produces 

the following consistent approximation: 

 𝑦𝑘 − 𝑦𝑘−1

Δ𝑥𝑘
+

𝑦𝑘 − 𝑦𝑘+1

Δ𝑥𝑘+1
−

1

2
(Δ𝑥𝑘 + Δ𝑥𝑘+1)𝑟𝑘 = 0  for 𝑘 = 1,… , 𝑛𝑒 − 1 and 

2𝐵𝑖0𝑦0 +
𝑦0 − 𝑦1

Δ𝑥1
−

Δ𝑥1

2
𝑟0 = 0 

2𝐵𝑖1𝑦𝑛𝑒
+

𝑦𝑛𝑒
− 𝑦𝑛𝑒−1

Δ𝑥𝑛𝑒

−
Δ𝑥𝑛𝑒

2
𝑟𝑛𝑒

= 0 

(6.28) 

This approximation is finite differences derived from a MWR. When finite differences are based 

on Taylor series it is often unclear how to accurately account for a variable grid or variable 

coefficients. Also, this second order approximation for the boundary conditions is not obvious 

from Taylor series analysis. Since this approximation is based on the Galerkin method, it is 

consistent and accurate and is the best way to derive difference approximations. Interestingly, 

in the first article describing a finite element method, Courant (1943) called it a generalized 

finite difference method. 

If the rate term for the n = 0 case is integrated more accurately rather than with the trapezoidal 

rule, a different approximation is obtained: 
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 𝑦𝑘 − 𝑦𝑘−1

Δ𝑥𝑘
+

𝑦𝑘 − 𝑦𝑘+1

Δ𝑥𝑘+1
−

Δ𝑥𝑘

6
(𝑟𝑘 + 2𝑟𝑘−1

2
) −

Δ𝑥𝑘+1

6
(𝑟𝑘 + 2𝑟𝑘+1

2
) = 0   and 

2𝐵𝑖0𝑦0 +
𝑦0 − 𝑦1

Δ𝑥1
−

Δ𝑥1

6
(𝑟0 + 2𝑟1

2
) = 0 

2𝐵𝑖1𝑦𝑛𝑒
+

𝑦𝑛𝑒
− 𝑦𝑛𝑒−1

Δ𝑥𝑛𝑒

−
Δ𝑥𝑛𝑒

6
(𝑟𝑛𝑒

+ 2𝑟𝑛𝑒−1
2
) = 0 

(6.29) 

Where 𝑟𝑘+
1
2
= 𝑟((𝑦𝑘 + 𝑦𝑘+1) 2⁄ ) with Simpson’s rule and 𝑟𝑘+

1
2
= (𝑟(𝑦𝑘) + 𝑟(𝑦𝑘+1)) 2⁄  if the rate 

term is interpolated, Eq. (6.27). With this approximation, the rate term or “load” is distributed 

rather than concentrated at the center in the difference approximation, Eq. (6.28). 

The quadratic case, n = 1, with Lobatto quadrature or Simpson’s rule produces a method 

which also somewhat finite difference like. The approximation is: 

 8

3
[
𝑦𝑗 − 𝑦𝑗−1

Δ𝑥𝑘
+

𝑦𝑗 − 𝑦𝑗+1

Δ𝑥𝑘
] −

2Δ𝑥𝑘

3
𝑟𝑗 = 0   at center node 𝑥1,𝑘 

−
𝑦𝑗 − 𝑦𝑗−2

3Δ𝑥𝑘
+

8

3
(
𝑦𝑗 − 𝑦𝑗−1

Δ𝑥𝑘
+

𝑦𝑗 − 𝑦𝑗+1

Δ𝑥𝑘+1
) −

𝑦𝑗 − 𝑦𝑗+2

3Δ𝑥𝑘+1
−

Δ𝑥𝑘 + Δ𝑥𝑘+1

6
𝑟𝑗 = 0 at 𝑥2,𝑘 = 𝑥0,𝑘+1 

2𝐵𝑖0𝑦0 +
8(𝑦0 − 𝑦1) − (𝑦0 − 𝑦2)

3Δ𝑥1
−

Δ𝑥1

6
𝑟0 = 0 at 𝑥0,1 

(6.30) 

Where, in order to better reveal the finite difference character of the equations, the dual 

subscript notation has been dropped (the central node of the approximation is designated by j). 

The equation at the right boundary is analogous to that shown. The equation at the center 

node is the central difference approximation. A method of higher order is produced when it is 

combined with the five-point formula for the interface nodes. The coefficients may look strange, 

but they give a symmetric matrix problem. 

The Galerkin method can be used with C1 trial functions, but it gives a matrix problem with 

greater band width than with the method of moments. With the method of moments, the weight 

functions are local to each element, whereas with the Galerkin method the weight functions are 

the trial functions and ℎ1, ℎ𝑛 , ℎ̅0 and ℎ̅1 are linked to functions in adjacent elements. For Hermite 

cubic functions there are 4 matrix entries per row for moments (Fig. 6.5), while for the Galerkin 

method there are 6. For multidimensional problems, the differences are more dramatic. 

6.4 Quadrature Requirements and Convergence Rates 

The MWR integrals in the finite element methods are usually approximated using the 

quadrature formulas of section 2.4. Irons (1966) was an early proponent for the use of 

quadrature calculations. To perform element by element integration, the quadrature is used 

directly with appropriate scaling. To perform numerical integration on the entire grid, the 

quadrature weights are scaled to the grid and combined at the element interface nodes, which 

gives: 

 𝑊𝑖𝑘 = Δ𝑥𝑘𝑊𝑖    for 𝑖 = 1,… . , 𝑛  and 

𝑊0,𝑘+1 = 𝑊𝑛+1,𝑘 = Δ𝑥𝑘𝑊𝑛+1 + Δ𝑥𝑘+1𝑊0  
(6.31) 
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Note that this procedure produces the well-known trapezoidal rule and Simpson’s rule for the 

first two Lobatto cases in Fig. 6.1. 

For the global methods we found that collocation at Gauss points approximates the method of 

moments and collocation at Lobatto points approximates a Galerkin method. For the diffusion 

problem with linear source and constant coefficients, section 3.1, the collocation methods 

missed exact integration of moments and Galerkin methods by one degree in each case. Even 

so, for the global methods the convergence rates are similar to methods with more accurate 

integration. In sections 6.2 and 6.3 we find the same one degree discrepancy for the finite 

element collocation formulations. We ask – Is this level of approximation adequate in a finite 

element context? Several studies address this question for the Galerkin method.  

Studies usually concentrate on integration accuracy for the stiffness matrix, since it is most 

important for convergence. The stiffness matrix always involves polynomials of lower degree 

than the mass matrix and in multiple dimensions the degree varies with coordinate direction. 

For simplicity, this discussion considers a general mass matrix, like Eqs. (2.121), (3.19) or 

(3.27) for global methods or Eqs. (6.15) or (6.26) for the FEM: 

 
𝑀𝑘𝑗 = ∫ 𝑤𝑘(𝑥)𝜓𝑗(𝑥)𝑑𝑥

1

0

  (6.32) 

where the wk are the weight functions and the ψj are the trial functions. We say the method 

employs full integration if the quadrature is accurate enough to integrate M exactly. With this 

definition, the integration may still be approximate since the equation could have nonlinear 

terms or variable coefficients. We call it reduced integration if the integration is not accurate 

enough to integrate M exactly. Douglas and Dupont (1975) show that the convergence rate is 

not affected by interpolation of nonlinear coefficients, like Eq. (6.27), so this definition of full 

integration is sufficient.  

Many studies have investigated the question of integration requirements for Galerkin finite 

element methods [Ciarlet and Raviart (1972), Fix (1972), Strang and Fix (1973), Raviart 

(1973), Fried (1974), Ciarlet (1978)]. Although there are some side issues related to problem 

smoothness, these studies show that for most problems the maximum rate of convergence can 

be achieved with less than full integration. Exact integration of all but the highest degree terms 

in Eq. (6.32) is sufficient to maintain the maximum convergence rate. For example, cubic 

elements can produce a 4th order convergence rate. For a Galerkin method, full integration 

would require an exact integration of all terms through 6th degree, since both terms in Eq. 

(6.32) are cubic. However, the 4th order convergence rate is maintained when only terms 

through 5th degree are integrated exactly. 5th degree integration accuracy is achieved with 3 

Gauss points or 4 Lobatto points.  

Although the theoretical analyses cited above apply only for Galerkin methods, it is obvious 

that the same rule applies to the method of moments. A moments method with cubic trial 

functions would use discontinuous linear weight functions, so full integration would require 
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exact integration through 4th degree. To achieve a 4th order convergence rate only terms 

through 3rd degree must be integrated exactly, requiring 2 Gauss points or 3 Lobatto points.  

These illustrations are for cubics, but for higher order trial functions the quadrature keeps pace 

with the required integration accuracy. If n is incremented by one to increase the degree of the 

trial function, the integrand in Eq. (6.32) and the quadrature accuracy both increase by two, so 

the integration is one degree less than full integration for any n. 

C0 collocation at Lobatto points has the desirable feature that the mass matrix is diagonal or 

lumped, so explicit time stepping is simplified. The work of Fried and Malcus (1975) lends 

additional support for this procedure. They found that the mass matrix from C0 collocation at 

Lobatto points resulted in no loss of convergence rate. Unfortunately, they did not consider 

Lobatto quadrature for integration of the stiffness matrix. 

The studies of integration requirements are supported by theoretical studies of convergence 

rates for FEM, including both integrated MWR, i.e. Galerkin and moments method, with full 

integration and the collocation methods with reduced integration. When discussing 

convergence rates, we say the rate is optimal if it is the same as for interpolation of a function. 

Linear interpolation is O(Δx2) and each additional degree adds to the exponent. The trial 

function here are polynomials of degree n+1, so optimal convergence is O(Δxn+2). Derivatives 

of the approximate solution usually converge more slowly. An O(Δxn+1) rate for the first 

derivative is optimal. Most methods achieve optimal rates of convergence overall. However, 

certain points in the domain converge at a rate which is faster than optimal. When these points 

can be determined the points are said to be superconvergent [reviewed by Křížek and 

Neittaanmäki (1998)]. 

Dupont (1976) summarizes the results for the C0 Galerkin method and the H1 Galerkin method 

or equivalently the method of moments. The convergence and superconvergence rates for the 

orthogonal collocation methods are the same as for the finite element methods they 

approximate. The rates for C1 collocation at Gauss points are the same as for the H1 Galerkin 

method or moments, while those for C0 collocation at Lobatto points are the same as for a C0 

Galerkin method. The overall convergence rate is optimal, e.g. O(Δxn+2) for L2 or L∞ norm. 

However, they also exhibit some superconvergence properties. 

The method of moments (or H1 Galerkin method) and C1 collocation at Gauss points converge 

with O(Δx2n) for both the solution and its first derivative, i.e. fluxes, at element interface nodes 

[DeBoor and Swartz (1973), Douglas and Dupont (1973), Dupont (1976)]. So, at the interface 

nodes, the solution is superconvergent for n > 2 and derivatives are superconvergent for n ≥ 2, 

n = 2 corresponds to cubic functions. 

C0 orthogonal collocation at Lobatto points converges with O(Δx2n+2) for both the solution and 

its first derivative at element interface nodes [Wheeler (1977)], the same as for the Galerkin 

method [Dupont (1976)].  It should be no surprise that to achieve this rate the first derivative or 

flux must be calculated by the method described in section 3.1.4, i.e. using Eq. (6.20) 

evaluated at the element boundary. It has also been shown that for the C0 method the solution 
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at the Lobatto points within the element is O(Δxn+3) for both Galerkin [Chen (1979), Bakker 

(1981)] and collocation [Nakao (1984)] methods. First derivatives converge with O(Δxn+2) at the 

n+1 Gauss points which lie between the Lobatto points [Chen (1979), Lesaint and Zlámal 

(1979)]. Fig. 6.6 illustrates the special superconvergent points for a single element with n = 4. 

In summary, the solution is superconvergent, O(Δxn+3), at the Lobatto points, the derivatives 

are superconvergent, O(Δxn+2), at the Gauss points and both are superconvergent, O(Δx2n+2), 

at the end or interface nodes. 

These estimates are based on certain assumptions on solution smoothness which will not 

apply in all cases, but they indicate the potential accuracy of these methods. The convergence 

and superconvergence results have been demonstrated in several studies [e.g. DeBoor and 

Swartz (1973), Carey, et al. (1981)]. 

These convergence rates are in terms of element size, Δx. In hp finite element terminology, this 

refinement is called h refinement. The other alternative is to increase n or the degree of the 

polynomial trial function, i.e. p refinement. Maday and Patera (1989) analyzed C0 collocation at 

Lobatto points and confirmed exponential convergence is achieved. Actually, an exponential 

convergence rate is implied by the O(Δxn+2), since for increasing n, the rate is not proportional 

to any fixed power of Δx. The superconvergence properties of this method have been largely 

overlooked in the spectral literature. However, Zhang (2005) analyses the method for both h 

and p refinement, producing results consistent with those of Nakao (1984) and others cited 

above. Like most articles in the spectral literature, these do not cite earlier work outside the 

spectral literature. 

6.5 Diffusion/Conduction with Source 

As an example, the problem described by Eq. (3.1) in Chapter 3 is solved by the finite element 

approximations described in sections 6.2 and 6.3. We treat the nonlinear, symmetric problem 

of Section 3.1.5, Eq. (3.35). The trial functions are either the C0 functions illustrated in Fig. 6.1 

or, for moments or collocation at Gauss points, the C1 functions illustrated in Fig. 6.2. In either 

case, the trial functions do not take any special advantage of the symmetry. For the symmetric 

problem, the domain is half as large, but the approximations still apply by setting Bi0 = 0 to 

account for the symmetry and by substitution of φ2 for 4φ2 and Bi1 for 2Bi1 to account for the 

smaller domain. Since these methods can converge quite fast, many of the calculations were 

performed in quad (128 bit) precision so the convergence trend could be observed without the 

influence of rounding errors. 

From the preceding sections of this chapter, it is obvious the extension from global to finite 

element approximations is conceptually simple. However, implementation of FEM is 

considerably more complicated. One must keep track of internal nodes and interface nodes 

and where they belong in the overall grid and the final matrix problem. This bookkeeping 

                     

X X X X X X X

Fig. 6.6 Superconvergent points: • - Lobatto, x - Gauss
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problem becomes even more complicated in multiple dimensions. Usually, the approximations 

are first calculated on an element-by-element basis. Once these local element approximations 

are determined, they are loaded into an overall matrix problem, a procedure called element 

assembly. The easiest way to visualize this process is to work through a simple example with a 

spreadsheet (one is supplied). The spreadsheet also provides an excellent way to check a 

computer language implementation.  

The supplied implementations in computer code utilize readily available band matrix solvers for 

the most part. However, some use purpose-built solvers. Band solvers store the matrix in a 

rectangular two-dimensional array. The shape is either the number of bands by the number of 

unknowns or vice versa. Whether bands are stored as rows or columns is dependent on the 

language and implementation. The storage scheme should be documented for the solver. 

Since the matrix structures in Figs. 6.4 and 6.5 are not truly band matrices, zeros must be 

used to fill in. This approach is not the most efficient since these zeros will be eliminated by the 

solver unnecessarily. A purpose-built solver would be more efficient, but the band solver is 

adequate for our purposes.  

Since the grid can be refined by increasing either n (p refinement) or ne (h refinement), it is 

important to understand how the calculations are affected by the refinement method. For 

purposes of comparison, a multiply or divide is called an operation. Additions and subtractions 

are not counted since they tend to be coupled with multiplies and are often completed in the 

same machine cycle. Only calculations required for each iteration are counted. To solve the 

problem as a band matrix, the number of these operations normalized by the number of 

equations is approximately (3𝑛𝑏
2 + 4𝑛𝑏 + 1) 8⁄ , where nb is the band width. For our problem, 

the band width is 2n + 3 with C0 functions and 2n + 1 with C1 functions. For the C0 case, the 

operations per node is (3𝑛2 + 11𝑛 + 10) 2⁄  using a band solver. If a purpose-built solver is 

constructed for the C0 trial functions illustrated in Fig. 6.4, the operations number roughly 

(𝑛2 + 8𝑛 + 15) 3⁄  per node. A purpose-built solver for the C1 matrix problem of Fig. 6.5 requires 

(2𝑛2 + 9𝑛 + 19) 6⁄  calculations per unknown. These calculations could be reduced for the 

symmetric C0 matrix problems, but this complication is not considered. 

Although the calculations for all are O(n2), the proportionality constants or leading coefficients 

differ and there are significant differences for small to intermediate values of n. For moments 

or collocation at Gauss points, either C0 or C1 functions can be used. The constants are the 

same for the two approaches using purpose-built solvers, so there is no difference for large n. 

However, the use of C1 functions reduces the operations by more than a factor of 2 for n < 4 

and 1½ for n < 8. The constant is 4½ times greater for the band solver, but the difference is 

only about a factor of 2 for cubics. Often only the order of the calculations is listed, but these 

other factors can make a significant difference. 

For the C0 method, the number of nodes or unknowns is (n+1)ne+1, while for the C1 methods 

there are (n)ne; however, the formulas above show the computations per unknown are similar. 

The effort is comparable when n for the C1 method is one greater than for the C0 method. e.g. 
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C1 cubics require slightly less effort than C0 quadratics. In either case if the grid is refined by 

adding elements (h refinement), the calculations increase linearly; whereas if it is refined by 

increasing n (p refinement), the calculations increase with n3. The exponential convergence 

rates achieved with p refinement are often used to justify its use. With numerical methods, one 

seldom gets something for nothing. The computational cost of the two alternatives is 

significantly different. It is even greater in multidimensional problems. One must keep this 

difference in mind when evaluating the different modes of refinement. 

For a full C0 Galerkin method with m > n, the calculation of M and G in Eq. (6.25) is far from 

insignificant. If the symmetry of M is taken into account, these calculations require roughly 

m(n+2)(n+5) operations per element, where m > n. These calculations are O(n2) whereas the 

matrix solution requires O(n2/3). The calculations are more than twice the matrix solve when n 

and m are small. There is a large step change in calculation effort when m is increased from n 

to n + 1.  

A method of moments or collocation at Gauss points with C1 trial functions requires the 

calculation of M and G in Eq. (6.14). The extra computations are not as significant because the 

trial functions conform to the quadrature points to some extent. Calculation of these quantities 

requires roughly 4n and 8n per element for collocation and the method of moments, 

respectively. Moments also requires an additional rate calculation at the interface nodes. 

These calculations are relatively small. One could consider a similar strategy for the full 

Galerkin method with m > n, i.e. select trial function nodes which are a subset of the 

quadrature points. 

The C0 Galerkin or collocation approximation with the Lagrange functions of Fig. 6.1 is given 

by Eqs. (6.20), (6.21) and (6.23). These same equations apply for moments or collocation at 

Gauss points, since Eq. (6.23) reduces to the side condition, Eq. (6.5). The convergence and 

superconvergence rates have been tested in several ways. First, a grid construction scheme 

was devised so that grids with different refinement levels could have a point in common. 

Superconvergence at a given point was tested by observing the convergence at that point in 

the domain. This refinement scheme is strictly for the purpose of testing convergence rates. In 

practice one would selectively refine the grid where needed, for example see Carey and 

Finlayson (1975). 

A fine grid with large n and ne is used to approximate the exact solution. Various norms are 

calculated. The L2 norm is calculated by interpolating the solution onto the finer grid and then 

integrating the square of the difference on the fine grid. The L∞ or maximum norm is also 

calculated. Some approximate norms are also calculated. For the C0 Galerkin method the error 

at the Lobatto points is measured by the norm: 

 
𝐿2
𝐿𝐺𝐿 = √∑ 𝑊𝑖𝑘(𝑦𝑖𝑘 − 𝑦̃𝑖𝑘)2

𝑖,𝑘   (6.33) 

where W are the overall Lobatto weights from Eq. (6.31), y and 𝑦̃ are exact (fine grid) and 

approximate solutions. A similar norm at the Gauss points is designated with superscript LG. 
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These approximate norms indicate the convergence rates at Gauss and Lobatto points within 

the approximating grid. These points are illustrated in Fig. 6.6. For example, if the C0 method 

converges with an overall rate of O(Δxn+2), but with O(Δxn+3) at Lobatto points, then the L2 norm 

will show the normal rate, while the 𝐿2
𝐿𝐺𝐿 norm will show the higher rate. Many interpolations 

are required to calculate these norms. Some of the codes provided with the project are 

dominated by interpolations and norm calculations.  

The various FEMs have been tested for different n, ne, Bi and various rate expressions. As a 

representative problem a nonlinear one from section 3.1.5 is considered. It uses the rate 

expression of Eq. (3.37) with k = 1, Ka = 0.5, and φ* = 5. Profiles for spherical geometry are 

shown in Fig. 3.24, however, here we consider planar geometry. First, a simple grid of three C0 

quadratic elements is used with Δx = 0.2, 0.4, 0.4. With quadratics, collocation is applied at the 

one interior Lobatto point and integration is by Simpson’s rule. Fig 6.7 shows the profiles of 𝑦̃, 

while Fig. 6.8 shows profiles of 𝑑𝑦̃ 𝑑𝑥⁄ . As explained in section 3.1.5, the boundary derivative 

approaches an asymptotic value of -φ2/φ* = -7.726 for this problem. The derivatives are 

normalized by this factor. This grid is too coarse to resolve the profile with three simple 

quadratic functions. Problems are apparent in the element nearest the boundary where 

changes in the solution are most severe. As expected, the largest errors occur for the 

derivative, including the important boundary value which governs flux to the surroundings.  

For quadratics, since n = 1, the method should exhibit an optimal overall convergence rate 

O(Δx3) for the solution and O(Δx2) for the derivative. However, the solution should convergence 

with O(Δx4) at both the interior and interface nodes. The derivatives should converge with 

O(Δx4) at the interface nodes and with O(Δx3) at the two interior Gauss points. The results 

shown in the figures seem to indicate greater accuracy at these special points relative to the 

interpolated solution. To confirm these convergence rates, the change of the error with grid 

refinement must be observed. 

Figs. 6.9 and 6.10 display various measures of the errors in 𝑦̃ and 𝑑𝑦̃ 𝑑𝑥⁄ , respectively. The 

calculations start with the grid used in Fig. 6.7, then it is refined, but all grids contain an 

interface node x = 0.60. As expected, the solution converges with third order, but at the 
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interface nodes and Lobatto points the convergence is fourth order. The overall convergence 

rate for the derivatives is second order, but convergence is fourth order at interface nodes and 

third order at the Gauss points. These results are all consistent with analysis theory. 

Solutions which are more accurate globally can be constructed from the superconvergent 

results. For example, one could use the solution and derivatives at interface nodes together 

with higher order Hermite interpolation [Hildebrand (1987), p. 282]. This approach would 

require interpolation over several elements, so it would work poorly when the grid is relatively 

coarse. A procedure which is local in nature would be more desirable. The C1 interpolating 

functions of Eq. (6.3), described in section 2.8 and illustrated in Fig. 6.2, are a good candidate. 

These functions can be used to interpolate through the solution at the nodes and the 

derivatives at the interface. Since all of these points are superconvergent, the interpolant will 

be an n + 3 degree or quartic C1 polynomial with improved accuracy at all points. Figs. 6.11 

and 6.12 show the results when this approach is applied to those in Figs. 6.7 and 6.8. This 

enhanced interpolation procedure produces a wonderful improvement for this example.  

Figs. 6.13 and 6.14 show that the enhanced interpolation increases the overall rate of 

convergence by one order for both the solution and the derivative. However, Fig. 6.14 also 

shows the unexpected result that the derivatives at Lobatto points are two orders more 
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accurate with enhanced interpolation. This quadratic method with fourth order convergence 

rate is quite remarkable. Although it is likely, someone has thought of this interpolation 

procedure, results with it have not been reported previously to the authors’ knowledge. The 

enhanced interpolation procedure could be used with global approximations and would 

improve those results. 

For n = 0, linear trial functions or finite differences, there are no interior Lobatto points, only 

interface nodes and the interface nodes are not superconvergent. As a result, the enhanced, 

Hermite cubic, interpolation does not improve the convergence rate. The O(Δxn+3) observed for 

quadratic and higher order methods is reduced by one order to second order. For n = 0, the 

derivatives at the interface nodes and from enhanced interpolation are second order and are 

superconvergent, since first order is optimal. Also for n = 0, the single Gauss point is at the 

center and the derivative there is superconvergent, since it is the well-known second order 

central difference approximation.  

Figs. 6.15 and 6.16 show profiles for the finite difference case with ne = 8. Although the 

accuracy at the nodes appears quite good, the error with linear interpolation is significant 

between nodes. The trial functions represent the derivatives as piecewise constants, so they 
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give even greater error. Even though enhanced interpolation does not improve the 

convergence order for the solution, it improves the profiles considerably compared to direct 

use of the trial functions. The convergence rates shown in Figs. 6.17 and 6.18 support the 

observations in Figs. 6.15 and 6.16. The L2 rates are shown with linear and enhanced 

interpolation and the maximum, L∞, error is shown with enhanced interpolation. Here the 

approximate 𝐿2
𝐿𝐺𝐿 and  𝐿2

𝐺𝐿 norms are calculated with the trapezoidal and midpoint rules, 

respectively. The convergence rates are as indicated above. Although enhanced interpolation 

does not improve the convergence rate, it nevertheless reduces the error by about an order of 

magnitude, which is a huge factor – equivalent to using more than 3 times as many nodes. The 

derivatives at the center or Gauss points and at the nodes are both second order, provided the 

nodal values are calculated with Eq. (6.20) evaluated at the element interface or: 

 𝑑𝑦

𝑑𝑥
|
𝑥𝑘

≈
𝑦𝑘+1 − 𝑦𝑘

Δ𝑥𝑘+1
+

1

2
Δ𝑥𝑘+1𝑟𝑘 

𝑑𝑦

𝑑𝑥
|
𝑥𝑘

≈
𝑦𝑘 − 𝑦𝑘−1

Δ𝑥𝑘
−

1

2
Δ𝑥𝑘𝑟𝑘 

(6.34) 

Either expression may be used as they are equal by virtue of Eq. (6.28). However, the 

derivative values at Gauss points are more accurate than those at the nodes. The results 

suggest an improved enhanced interpolation method could be constructed using the 

derivatives at the Gauss points. 

All the results above use C0 collocation at Lobatto points, which is equivalent to a reduced 

Lobatto integration procedure for the Galerkin integrals. Now we ask the question – How much 

accuracy is gained with an improved approximation of the integrals? Consider the full C0 

Galerkin method from section 6.3, Eq. (6.25) with m > n, whereas m = n gives the collocation 

procedure. The overall convergence rates with m > n are the same with the one exception 

noted below. Even so, the results for the global calculations in section 3.1.5 suggest relative 

errors are problem dependent, but reductions can be a factor of four. In some cases little or no 
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improvement is observed when m > n + 1, but there is usually some improvement with one 

extra quadrature point, i.e. m = n + 1. That is the case used here.  

Figs. 6.19 and 6.20 compare the maximum error in y or L∞ error norms and boundary 

derivative errors for the Galerkin method, with m = n + 1, and collocation at Lobatto points, m 

= n. Both methods use the enhanced method to interpolate between nodes. The n = 0 case 

produces finite difference approximations; the collocation approach gives the approximation in 

Eq. (6.28), while the Galerkin method with Simpson rule integration gives Eq. (6.29). For this 

problem, the simpler finite difference case produces results which are more accurate by more 

than a factor of 2. 

The relative accuracy for the quadratic case, n = 1, is totally different. The maximum error in y 

converges at the same rate in both cases, but the error is reduced more than a factor of 4 with 

the full Galerkin method. Differences for the boundary derivative are more dramatic. The 

collocation method produces the expected O(Δx4) superconvergent boundary derivative error, 

but the full Galerkin method produces an anomalous convergence rate which is better by 2 

orders. The rate of O(Δx6) is quite astonishing since the optimal rate for quadratics is O(Δx2). 

This improved accuracy occurs only at the boundary, not at interior interface nodes. We have 

no explanation for this behavior.  

For the higher order cases, the convergence order is the same for both a full Galerkin method 

and collocation at Lobatto points. The differences are smaller than in the quadratic case, 

especially for even values of n. In all cases, the small accuracy improvements with a full 

Galerkin method do not offset the additional calculations required. 

Table 6.1 summarizes the results of calculations with different boundary conditions, source 

expressions and different values of n. The results apply for n > 0 with both collocation at 

Lobatto points and a full C0 Galerkin method with m > n. The convergence rates at the 

interface nodes, including the important boundary node, are extraordinary for large n. 

Next, consider the C1 methods, both collocation at Gauss points and the method of moments, 

described in section 6.2. The profiles with cubics, n = 2, with 3 elements are very similar to 
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those in Figs. 6.11 and 6.12 with C0 quadratics and enhanced interpolation. As discussed 

above, the effort using C1 cubic functions is also similar to that needed for C0 quadratic 

collocation at Lobatto points. Since these results are so close to the exact solution, the error 

profiles are used for comparison in Figs. 6.21 and 6.22. The maximum solution error is about 

2% for the collocation methods and 1% for the method of moments. The derivative errors are 

also more accurate with the method of moments. Here the integrals for the method of 

moments are approximated with the Lobatto quadrature method, described in section 6.2, 

which is two degrees more accurate than the integration of collocation at Gauss points. Errors 

with the method of moments are similar when more accurate integration is used. 

Error norms for the solution and derivatives with n = 3, quartic polynomials, are plotted in Figs. 

6.23 and 6.24. In agreement with the convergence studies, the overall error is O(Δxn+2) and 

O(Δxn+1) for the first derivative. The error is O(Δx2n) for the solution and derivative at interface 

nodes, so the solution is superconvergent for n > 2. However, we discovered that at the n - 1 

interior Lobatto points, the derivatives are superconvergent O(Δxn+2). This result appears to be 

new. These interior derivatives and the interface solution and derivatives could be used to 

construct a solution which is globally more accurate. This more accurate interpolant would be a 

C1 function of degree n + 2. This approach has not been implemented.  

Table 6.1 Convergence Order C0
 Collocation and Galerkin 

Error 
Solution Derivative 

Normal Enhanced Normal Enhanced 

L2 Norm n + 2 n + 3† n + 1 n + 2 

Interface Nodes 2n + 2 -  n + 1* 2n + 2 

Lobatto Points n + 3† - n + 1 n + 3† 

Gauss Points n + 2 n + 3† n + 2 n + 2 

  *n + 2 when n is even, † n + 2 = 2 when n = 0 
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Collocation at Gauss points is a method of moments with integrals approximated with n point 

Gaussian quadrature. Now consider the question – How much accuracy is gained with a more 

accurate approximation of the moment method integrals? Although the results are problem 

dependent, results for this problem with collocation at Gauss points are compared to those 

with the method of moments. The integrals in the method of moments were approximated 

using one extra Gauss point. One extra Gauss point produces the same degree of accuracy 

and similar results to the Lobatto quadrature method described in section 6.2. For trial 

functions of various degree, Fig. 6.25 shows the maximum error in the solution, while Fig. 6.26 

shows the error in the derivative or flux at x = 1. Errors in the solution are similar with the two 

methods, while larger differences are evident in the boundary derivative. The order of 

convergence of the boundary derivative is anomalous for the cubic moments case, i.e. n = 2. 

The rate should be O(Δx4) according analytical studies. That rate is observed for internal 

interface nodes, but at the boundary the rate is two orders higher. A similar anomaly was 

observed the n = 1 C0 Galerkin method. We have no explanation for the anomaly. What is 

striking about these results is the overall accuracy for this relatively difficult problem. Even 

without selective refinement of the grid an accuracy of 5 or 6 digits is obtained with only a few 

elements.  
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The convergence rates for C1 collocation at Gauss points and the method of moments are 

summarized in Table 6.2. The results apply for n > 1. For n = 1, i.e. quadratic trial functions, 

the convergence rate for the solution drops by one order, so the convergence order is n + 1 = 2 

for both the solution and the derivative. Derivatives at interface nodes are superconvergent for 

n ≥ 2 and the solution at interface nodes are superconvergent for n > 2. Derivatives at the n – 

1 interior Lobatto points are superconvergent by one order.  

The usual reference given for origination of the spectral element method is an article by Patera 

(1984). The article describes the finite element method with collocation at Chebyshev points. 

Most later spectral element papers cite Maday and Patera (1989) who used collocation at 

Lobatto points as described in section 6.3. The Chebyshev method is easily implemented 

using the same computer code. It should be implemented with C0 functions and a natural 

boundary condition treatment at the interface nodes. The method is unique only for n > 1, 

since for other cases, it is the same as collocation at Lobatto points. Collocation at Chebyshev 

points achieves optimal convergence rates. Through testing we have found the method 

achieves convergence rates for both solution and derivative at interface nodes of n + 2 for 

even n and n + 3 when n is odd, when the derivatives are calculated using Eq. (6.20). These 

rates are superconvergent for derivatives and for the solution when n is odd. The convergence 

rates are always worse than collocation at Lobatto points and worse than collocation at Gauss 

points for n > 3.  

Many results are presented above, but the question now arises – Which method is most 

efficient? The answer is, of course, problem dependent, and your selection depends on your 

criteria. It also depends on the strategy used for constructing the grid. Although the results are 

not applicable for all problems, the exercise to compare methods is instructive since it reveals 

tradeoffs that are universal.  

Table 6.3 compares methods on the basis of operations for a given accuracy, where an 

operation is defined as a multiply or division. It was constructed as follows. First, from the 

results described above, the number of elements required for a given accuracy is determined. 

Next, the operations for the matrix solution is calculated on a per element basis using the 

formulas given near the beginning of this section. Finally, to that number we add 11(n + 1) for 

collocation at Lobatto points and 13n for collocation at Gauss points to give the column “cost 

factor” in the table. Of these last numbers, 8 accounts for calculation of the rate and its 

Table 6.2 Convergence Order C1 Collocation 

or Moments 

Error Solution Derivative 

L2 Norm n + 2 n + 1 

Interface Nodes 2n 2n 

Gauss Points n + 2 n + 1 

Lobatto Points n + 2 n + 2 
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derivative and the remainder are for construction of the matrix problem. The cost factor is an 

ideal number if all optimizations are utilized. The code developed in the project performs more 

operations than those listed, since it is designed for flexibility and testing. The cost factor is 

exceedingly small for the finite difference case, Lobatto n = 0. Note also, the factor for an n 

point Gauss method is similar to that for an n - 1 point Lobatto method. These methods which 

require roughly the same effort also converge the solution and derivatives at the same rate, 

provided enhanced interpolation is used with Lobatto points. 

The other columns in Table 6.3 designate different accuracy criteria, either the maximum error 

in y or error in the boundary flux. The boundary flux was used extensively in the comparisons 

of Chapters 3 and 4. Each entry gives the number of elements required multiplied by its cost 

factor. If one is satisfied with a 1% error in the solution, the finite difference method wins, 

hands down. Enhanced interpolation gives it a substantial boost for a maximum error criteria, 

otherwise it is not competitive. If a 1% error is required for the boundary flux, the quadratic 

Lobatto method is most efficient, but the cubic Gauss method is a close second. All methods 

require similar effort to achieve a 0.1% error in the solution. A 0.1% error in the boundary flux 

is achieved most efficiently by n = 2 or 3 Lobatto points, followed closely by n = 3 Gauss 

points. A somewhat loose error criteria favors low order methods, while a tight error tolerance 

favors higher order methods. The conditions when one is favored over the others depends on 

the problem and this comparison method is crude. Nevertheless, the trends always follow 

those found here. 

Most of the supplied project codes follow the usual procedure of calculating the approximation 

for each element and then assembling them into the overall matrix problem. With this 

procedure, the element calculations are performed on arrays which are O(n) in length. We will 

call this the vector length. Vector length is important in most computations because there is 

always some overhead to start up a calculation. For example, with interpreted languages, like 

Matlab or Python, library functions are normally used for array operations and there is 

overhead for function calls. Efficiency can be gained by operating on all elements at once, 

since the vector lengths will normally be greater. This approach is tedious if the code is to work 

Table 6.3 Relative Cost of Methods 

n 
Cost 

factor 
Maximum y error Error dy/dx at x = 1 

0.01 0.001 0.0001 0.01 0.001 0.0001 

Lobatto Points: 

0 16 115 304 928 266 832 2634 

1 38 147 309 532 178 439 936 

2 68 202 291 449 212 352 631 

3 108 211 307 449 236 368 586 

Gauss Points: 

2 41 150 317 563 194 481 1017 

3 71 209 308 477 235 388 765 

4 110 241 353 493 275 427 694 
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for any value of n. Efficient code is easier to create if each polynomial degree is coded 

separately. Separate implementations also permit the exploitation any special features of the 

basic arrays, e.g. zero terms in the first derivative matrix A.  

The order of the calculations and the way arrays are laid out in memory also affect efficiency. 

Computers work most efficiently when calculations involve sequential accesses to memory, 

called stride-one calculations, rather than when the calculations involve skipping around in 

memory. Different languages have different conventions for storing multi-dimensional arrays, 

either as column-major-order or row-major-order. The arrays should be defined to give stride-

one calculations as much as possible. 
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Appendices 

Appendix A.1 - Accuracy of Weights Calculated by Recurrence 

In Chapter 2 several procedures are described for calculating the Jacobi polynomials, their 

derivatives, and the quadrature and barycentric weights. This section discusses the accuracy 

and efficiency of those calculations. If the calculations do not produce sufficient accuracy, 

there are potentially two solutions. Either the calculations can be performed with greater 

floating-point precision or possibly the calculation procedure can be improved. Since it is most 

desirable to use accurate calculation procedures, that approach is investigated here using 

numerical experiments.  

The accuracy and efficiency of the weight calculations has been the subject of many studies 

[e.g. Lether (1978), Yakimiw (1996), Swarztrauber (2003), Hale and Townsend (2013), 

Bogaert (2014)]. Most studies have considered only Gaussian quadrature, but a few have also 

addressed Lobatto, Radau or Jacobi-Gauss quadrature. The eigenvalue method of Golub and 

Welsch (1969), described in Section 2.3.1, is the most common method for calculating roots 

and weights. The weights can be determined from the first components of the associated 

eigenvectors. Previous studies have found it more prone to rounding errors with large n. We 

prefer to use the formulas discussed in Section 2.4, since that approach is compatible with the 

efficient root finding method discussed in Section 2.3.4. However, since several formulas are 

available, which is the most accurate and efficient?  

Figs. A.1 and A.2 show the maximum relative error for n = 4 - 4000 for barycentric weight 

calculations using the formulas in Section  2.4.1. The weight errors are shown for Gauss and 

Lobatto points from continued products for full, Eqs. (2.67) to (2.69), and shortcut, Eq. (2.70), 

roots and directly from full and shortcut polynomial derivatives, Eqs. (2.71) and (2.72)., labeled 

𝑃𝑛
′ and 𝑃𝑛/2

′ , respectively. The polynomial derivatives were calculated using Eq. (2.35) which 

reduces to Eq. (2.41) for the Legendre polynomials or Gauss points. The continued product 
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calculations were afflicted by underflows for n > 1000 even after a few attempts to scale the 

calculations. The errors shown are the maximum fractional error or the maximum relative error 

defined by max
𝑖

(|𝜖𝑖/𝑊𝑖|), where ϵ are the errors and W are the “correct” values from 128 bit 

calculations (quad precision). The error growth rate is indicated by the straight line fit to the 

results for n > 20. The error growth rate is about n2 for the product formulas since the point 

spacing near the boundaries is 1/n2. However, in both cases the errors for the shortcut cases 

are smaller by approximately a factor of four because the square of the polynomial roots is 

calculated directly using Eq. (2.70). The rate of error growth is similar when the barycentric 

weights are calculated directly from the derivatives of the polynomial using Eq. (2.71). 

However, for Gauss points when the derivatives are calculated with Eq. (2.41) the error grows 

at a slower rate of about n1.5.  

Figs. A.3 and A.4 show the results of calculations for Gaussian and Lobatto quadrature 

weights using the formulas in Eqs. (2.78) and (2.81), respectively. The maximum relative error 

in the Gaussian quadrature weights grow with approximately n2 in most cases. As many have 

noted, the second formula is worse than the others. The third and fourth formulas are more 

accurate than the first by approximately a factor of two on average. For Lobatto quadrature 

weights, the error grows with approximately n1.4 for the second, third and fourth formulas and 

with n2 for the others. Since the Lobatto quadrature weights are directly proportional to the 

square of the barycentric weights, the results in Fig. A.4 suggest more accurate barycentric 

weights can be calculated by applying the correction in the second formula of Eq. (2.81) or: 

 
 𝑊𝑖

𝑏 = −[(1 − 𝑥𝑖
2)𝑃𝑛

(1,1) ′(𝑥𝑖) − 2𝑥𝑖𝑃𝑛
(1,1)(𝑥𝑖)]

−1

 (A.1) 

Fig. A.5 shows the errors from calculations using Eq.(A.1) compared to the other cases in Fig. 

A.2. From these results Eq. (A.1) clearly produces a slower error growth and smaller overall 

errors for n > 100. 

The individual quantities in some of the quadrature formulas were calculated to gain a better 

understanding of the errors shown in Figs. A.1 to A.5. The various formulas; Eqs. (2.71), 
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(2.72), (2.78), (2.81), etc.; depend on values 

of the roots, the polynomials and/or their 

derivatives evaluated at the roots. To obtain 

accurate weights, we need accurate methods 

for calculating the individual quantities in the 

formulas. One issue of importance is that the 

formulas do not depend explicitly on the 

roots, but rather on 1 ± 𝑥. Since the points 

are clustered near the endpoints, these 

quantities are proportional to 1/n2 near the 

boundaries. Even if the roots have constant 

error of say ~10-16, the fractional error in 

these quantities will increase with n2 near the 

boundaries. For example, with n = 400, the first Gauss point is approximately 0.99998, so 

when 1 − 𝑥2 is calculated roughly four or five digits of accuracy are lost. Also, there are several 

methods which can be used to calculate the polynomial derivatives, e.g. Eqs. (2.29), (2.35) 

and (2.38). Eq. (2.35) requires the fewest calculations, but would one of the other methods be 

more accurate? Another issue is that Eq. (2.35) gives the product of the derivative and 1 − 𝑥2. 

If the derivative is calculated by division with 1 − 𝑥2, its error will grow with at least n2 due to 

the clustering near the end points. 

Figs. A.6 and A.7 show some results of the calculations performed to investigate the accuracy 

of the individual parameters in the formulas for the weights.  These calculations were made 

with roots that were iterated to roundoff conditions with 64 bit (double precision) arithmetic. 

Then the accuracy was determined by comparing double precision calculations with quad 

precision calculations. The quad precision calculations used the same roots to double 

precision accuracy.   

Fig. A.6 shows some of the parameters for the Legendre polynomials in Eq. (2.78) used for 

calculating the Gaussian quadrature weights. As expected, the maximum relative error in 1 −
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𝑥2 grows with n2. For the Legendre polynomials, Eq. (2.35) simplifies to Eq. (2.41) and Eq. 

(2.38) reduces to Eq. (2.44). Eq. (2.41), (1 − 𝑥2)𝑃𝑛
′(𝑥) = 𝑛𝑃𝑛−1 − 𝑛𝑥𝑃𝑛, is of interest since it is 

the easiest way to calculate the first derivative of the polynomial. It consists of the two terms 

involving Pn-1 and Pn. Pn is zero to within the limits of machine precision, while Pn-1 shows a 

rapid, n3, rate of error growth. Yet, we find the left-hand side of the equation shows a slower 

n1.5 rate of error growth. Clearly, the Pn term is important and produces greater accuracy even 

though it is small. Fig. A.3 shows the second formula in Eq. (2.78) is the least accurate, which 

is consistent with the accuracy of Pn-1 in Fig. A.6. The first expression in Eq. (2.78) depends on 

(√1 − 𝑥2𝑃𝑛
′)

2
. To calculate the derivative alone with Eq. (2.41) requires division by 1 − 𝑥2, so 

as expected the error in the derivative grows with n2.  One might hope another method might 

yield a more accurate calculation of the derivative. Unfortunately, Eqs. (2.29) (results not 

shown), (2.41) and (2.44) give virtually the same maximum error. Eq. (2.41) is as accurate as 

any other and requires far less computation. 

Fig. A.7 shows calculations relevant for Lobatto quadrature. All but one calculation are with the 

Jacobi polynomials, 𝑃𝑛
(1,1)

, and its derivatives (superscripts not shown in figure). For these 

polynomials, Eq. (2.35) reduces to (1 − 𝑥2)𝑃𝑛
(1,1) ′ = (𝑛 + 1)𝑃𝑛−1

(1,1)
− 𝑛𝑥𝑃𝑛

(1,1)
. Again, the error in 

𝑃𝑛−1
(1,1)

 grows with n3. For Lobatto quadrature, Eq. (2.81), the weights depend only on the 

combination (1 − 𝑥2)𝑃𝑛
(1,1) ′

 and not the derivatives alone. Unlike the Gauss case, the product 

is not more accurate than the derivative alone. Although this combination is slightly more 

accurate, its error grows with n2 like the error for most of the parameters. Eqs. (2.29), (2.35) 

and (2.38) produce derivatives of similar accuracy, so there is again no advantage to the 

longer calculations required by Eqs. (2.29) and (2.38). The error growth for the Legendre 

polynomials, 𝑃𝑛+1
(0,0)

, is somewhat less than the others. This suggests that the fourth formula in 

Eq. (2.81) will produce greater accuracy, which is observed in Fig. A.4. Calculations like those 

shown in Figs. A.6 and A.7 have been performed for the other weight formulas and similar 

results have been found. It appears we can do no better than approximately an n1.5 to n1.8 rate 

of error growth for the weights. 

Yakimiw (1996) claims that more accurate weights can be calculated by reducing the 

sensitivity of the weights to small errors in the roots, The sensitivity is reduced by setting 

𝑑𝑊(𝑥) 𝑑𝑥 = 0⁄  at the root, where the weight expressions are viewed as continuous functions. 

Section 2.4.7 describes this approach in greater detail. When the root calculations are iterated 

to roundoff, the first correction, Eq. (2.97), is claimed to achieve the slowest rate of error 

growth.  

When the parameters for Gaussian quadrature are substituted in Eq. (2.97), the third 

expression of Eq. (2.78) results. For Lobatto quadrature the second expression of Eq. (2.81) 

and Eq. (A.1) result. Figs. A.3 and A.4 have shown that these formulas produce error growth 

rates of n1.4 to n1.8 , which is not substantially better than some of the others. This result would 

seem to conflict with the contentions of Yakimiw.  
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Eq. (2.97) is reproduced here: 

 
 𝑟(𝑥)𝑃′(𝑥) = 𝑟(𝑥0)𝑃

′(𝑥0) [1 + (𝑐10 + 𝑐11𝑥0) 
𝑃(𝑥0)

(1 − 𝑥0
2)𝑃′(𝑥0)

] 

= (1 − 𝑥0
2) 𝑃(1,1) ′(𝑥0) [1 − 2x0

𝑃(1,1)(𝑥0)

(1 − 𝑥0
2)𝑃(1,1) ′(𝑥0)

] 

(A.2) 

The specific form for Lobatto quadrature is shown in the second equation after substitution of 

the parameters from Table 2.5. By comparison with Eq. (2.81), the expression can be identified 

with the second formula, while the first corresponds to neglecting the second term within the 

brackets. We call the second term a “correction”, since with precise calculations, the second 

term is zero at the root. The accuracy of the overall expression depends on the accuracy of the 

coefficients and the magnitude of the second term within the brackets. If the equation is 

applied with quad (128 bit) precision, the weight errors are ~10-25 or less, even if the roots 

have only double precision accuracy, i.e   ~10-16. The comparisons in Figs. A.3 and A.4 have 

already shown that the second term within the brackets is significant relative to unity. 

Fig. A.8 show some results of calculations to 

investigate the utility of Eq. (2.97). The 

calculations in the figure are specific to 

Lobatto quadrature, but similar results apply 

to the others. The plot is against 𝜃 =

arccos (𝑥) to spread the roots out. Only the 

points nearest the boundary are shown, θ < 

30° or x > 0.866.  The figure shows the 

relative or fractional error in 𝑟(𝑥)𝑃𝑛
′(𝑥) for the 

Jacobi (α = β = 1) polynomials at Lobatto 

points. The point nearest the boundary is 

approximately 0.999954, which accounts for 

the roughly 4 digit loss of accuracy. The 

calculation used roots, i.e. x0, iterated to roundoff conditions in double precision. The results 

labeled no correction are the raw values of 𝑟(𝑥0)𝑃𝑛
′(𝑥0), while those labeled w/correction use 

the full Eq. (2.97) reproduced above. The first two curves (filled diamonds and solid line) were 

all calculated in double precision using the recurrence relations to calculate the polynomials 

and Eq. (2.35) to calculate their derivatives. In this case, Eq. (2.97) gives little improvement. 

The second pair of results, labeled as “accurate”, use the same values of the roots, but quad 

precision calculations of 𝑟(𝑥0), 𝑃𝑛(𝑥0) and 𝑃𝑛
′(𝑥0) truncated to double precision and then used 

in Eq. (2.97). The remainder of the calculation was performed in double precision using double 

precision values, including the calculation of the correction term. With these three parameters 

calculated more accurately, we find that without correction the results near the boundary are 

little better than those calculated in double precision. However, the correction term reduces the 

error by up to 4 orders of magnitude. From these results, we can conclude that Eq. (2.97) is 
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useful, but only if the values of the polynomial, its derivative and the r(x0) term are calculated 

more accurately. 

Yakimiw circumvented this inaccuracy problem by using an alternate Fourier method for 

calculating the polynomial values and derivatives near the boundary. The Fourier method for 

polynomial calculation is an O(n2) process involving transcendental functions, which are 

computationally intensive. 

It appears that our original conclusion is correct. If the recurrence relations are used to 

calculate the polynomials, the best error growth rate we can hope to achieve for the weights is 

approximately O(n1.5 ). 

Appendix A.2 - Asymptotic Jacobi Polynomial Approximations 

The problems with accuracy described in the preceding section only occurs for large n.  Rather 

than use an inefficient Fourier method for polynomial calculation, Hale and Townsend (2013) 

used asymptotic approximations for the polynomials. They address Gaussian and Jacobi-

Gauss quadrature strictly for n > 50. This approach has the twin advantages of greater 

accuracy and greater efficiency. If n is large enough the efficiency is greater because there are 

no calculations of O(n2) which is the case for using the recurrence relationships or a Fourier 

method.  

As was the case with root estimation, asymptotic approximations for the Jacobi polynomials 

subdivide into those accurate near the boundary and those accurate away from the boundary. 

We will again refer to these as boundary and interior methods.  

Szegö, (1975) and Olver, et al. (2018) give the following interior asymptotic formula for 

ultraspherical polynomials: 

 
𝑃𝑛

(𝛼,𝛼)
(𝑐𝑜𝑠𝜃) ≈ ∑  ℎ𝑛,𝑘

𝑀

𝑘=0

cos (𝑎𝑛,𝑘)

 (2sin𝜃)𝑘+𝛼+1
2

 (A.3)  

where: 

 𝑎𝑛,𝑘 = (𝑛 + 𝑘 + 𝛼 +
1

2
) 𝜃 − (𝑘 + 𝛼 +

1

2
)

𝜋

2
    and 

ℎ𝑛,𝑘 =
22𝛼+1Γ(𝑛 + 𝛼 + 1)Γ(𝑘 + 1

2
− 𝛼)Γ(𝑘 + 1

2
+ 𝛼)  

√𝜋 Γ(1
2
+ α)Γ(1

2
− α) Γ(𝑛 + 𝑘 + 𝛼 + 11

2
) 𝑘!

,   or 

ℎ𝑛,𝑘 = ℎ𝑛,𝑘−1

(𝑘 − 1
2
− 𝛼)(𝑘 − 1

2
+ 𝛼)

𝑘(𝑛 + 𝑘 + 1
2
+ 𝛼)

,   and 

ℎ𝑛,0 =
22𝛼+1Γ(𝑛 + 𝛼 + 1)  

√𝜋  Γ(𝑛 + 𝛼 + 11
2
)

   

 

This relationship is valid for  1
6
𝜋 < 𝜃 <

5

 6
𝜋. It works well even somewhat outside this range but is far 

better in the interior of the interval and extremely poor for the first few roots nearest the 
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boundary. There is an extension of this formula for general Jacobi polynomials which requires 

a double summation.  

For Legendre polynomials, Bogaert (2014) developed coefficients for an expansion proposed 

by Szegö (1934). This boundary approximation is:  

 
𝑃𝑛(𝑐𝑜𝑠𝜃) ≈ 𝑠(𝜃) ∑  𝑏𝑘(𝜃)

𝑀

𝑘=0

𝐽𝑘 (
𝜎𝑛𝜃

2
)(

2

𝜎𝑛
)
𝑘

 (A.4)  

where 𝜎𝑛 = 2𝑛 + 1, the same definition given with Eq. (2.51) and Jk is the Bessell function of 

the first kind of order k. The expressions for bk become increasingly complicated, but he 

worked out the first few using symbolic algebra software: 

 

𝑠 = √
𝜃

𝑠𝑖𝑛𝜃
 

𝑏0 = 1 

𝑏1 = [𝜃 cos 𝜃 − sin 𝜃](8𝜃 sin 𝜃)−1 

𝑏2 =
1

2
[6𝜃 cos 𝜃 sin 𝜃 − 15 sin2 𝜃 + 𝜃2(9 − sin2 𝜃)](8𝜃 sin 𝜃)−2 

𝑏3 =
5

2
{[(𝜃3 + 21𝜃) sin2 𝜃 + 15𝜃3] cos 𝜃 − [(3𝜃2 + 63) sin2 𝜃 − 27𝜃2] sin 𝜃}(8𝜃 sin 𝜃)−3 

These asymptotic formulas are incomplete for our purposes, since Eqs. (A.3) is not valid for 

the Radau case (α = 1, β = 0) and Eq. (A.4) is valid only for Legendre polynomials or the Gauss 

case (α = β = 0). Radau quadrature is relatively less important, but we must address the very 

important Lobatto case. We also need the derivatives of the polynomials. In the discussion of 

the equivalence of the different quadrature formulas in Section 2.4, we have seen that all of the 

polynomials of interest are interrelated through the relationships given in Sections 2.1 and 2.2. 

The polynomials and derivatives for the Lobatto and Radau cases can be determined from the 

Legendre polynomials. However, rounding errors must be minimized in the application of these 

relationships. For large values of n, it makes sense to work with θ coordinates rather than x. 

The asymptotic relationships are directly dependent on θ and roundoff errors are reduced 

because the roots are nearly equally spaced in θ rather than clustered about the endpoints. 

First, we must work out the derivatives of the asymptotic relationships. Eqs. (2.27) and (2.35) 

were considered for use with the interior approximation. Each approach requires an additional 

polynomial calculation, Eq. (2.35) requires the calculation of 𝑃𝑛−1
(𝛼,𝛼)

, while Eq. (2.27) utilizes the 

value of 𝑃𝑛−1
(𝛼+1,𝛼+1)

. The use of Eq. (2.27) worked well for most problems, but produced 

roundoff errors for Radau points. The results with Eq. (2.35) were afflicted by rounding errors 

for all point types. The best results were found using direct differentiation of the expressions 

described above. 

 The derivative of the interior approximation, Eq. (A.3), is: 

 𝑑𝑃𝑛
(𝛼,𝛼)

𝑑𝜃
≈ − ∑  

ℎ𝑛,𝑘

 (2sin𝜃)𝑘+𝛼+1
2

𝑀

𝑘=0

[(𝑘 + 𝛼 +
1

2
) cot 𝜃 cos(𝑎𝑛,𝑘) + (𝑛 + 𝑘 + 𝛼 +

1

2
) sin(𝑎𝑛,,𝑘)] (A.5)  
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The derivative of the boundary approximation, Eq. (A.4), is: 

 𝑑𝑃𝑛

𝑑𝜃
≈ ∑ [(𝑠′𝑏𝑘 + 𝑠 𝑏𝑘

′ )𝐽𝑘 + 𝑠 𝑏𝑘 (
𝜎𝑛

2
) 𝐽𝑘

′ ]

𝑀

𝑘=0

(
2

𝜎𝑛
)
𝑘

 (A.6)  

The derivatives of the Bessell functions are straight forward, while the derivatives of the 

coefficients are:  

 𝑠′ = −4𝑠(𝜃)𝑏1(θ) 

𝑏1
′ = 8[sin2 𝜃 − 𝜃2](8𝜃 sin𝜃)−2 

𝑏2
′ = 24[𝜃 cos3 𝜃 − 5 cos2 𝜃 sin 𝜃 − (3𝜃2 + 1)𝜃 cos(𝜃) 15 sin2 𝜃  

−(𝜃2 − 5) sin(𝜃)](8𝜃 sin𝜃)−3 

𝑏3
′ = 20[ (3𝜃2 + 189) cos4 𝜃 + 42𝜃 cos3 𝜃 sin 𝜃 − (29𝜃4 − 42𝜃2 + 378) cos2 𝜃  

 − (54𝜃2 + 42) 𝜃cos 𝜃 sin 𝜃 − 16𝜃4 − 45𝜃2 + 189](8𝜃 sin 𝜃)−4 

 

The key to the reduction of rounding errors is to avoid subtracting two numbers of nearly equal 

magnitude. All coefficients of the expansion are subject to rounding errors. For example, 

consider the numerator of b1. A Maclaurin series expansion gives: 

 
𝑏1(8𝜃 sin𝜃) = 𝜃 cos 𝜃 − sin 𝜃  = (𝜃 −

𝜃3

2!
+ ⋯) − (𝜃 −

𝜃3

6!
+ ⋯ ) = −

𝜃3

3
+ ⋯  

The individual terms in the series go to zero with θ but the expression as a whole goes to zero 

with θ3. For small values the two terms are of comparable value causing a loss of accuracy. 

The loss of accuracy can be avoided by using the Maclaurin series expansion for the full 

expression rather than computing each term and then subtracting. All coefficients bk in the 

expansion behave in this manner, but only the lower order coefficients need to be expanded in 

this way since the higher order terms are less important near θ = 0. 

For Lobatto quadrature, the value and derivative of 𝑃𝑛
(1,1)

 are needed. Interior approximations 

provide these values directly from Eqs. (A.3) and (A.5). For the boundary area however, Eqs. 

(A.4) and (A.6) are valid only for Legendre polynomials, or 𝑃𝑛
(0,0)

. The value and derivative of 

𝑃𝑛
(1,1)

 are easily calculated from the value and derivative of 𝑃𝑛+1
(0,0)

.The two polynomials are 

related through Eq. (2.27), which can be differentiated to give a relationship for the derivative 

of 𝑃𝑛
(1,1)

 in terms of the second derivative of the Legendre polynomial. Eq. (2.39) relates the 

second derivative to the value and first derivative. After converting to θ coordinates the 

resulting relationships are: 

 
𝑃𝑛

(1,1)
=

2

(𝑛 + 2) sin 𝜃

𝑑𝑃𝑛+1
(0,0)

𝑑𝜃
 

𝑑𝑃𝑛
(1,1)

𝑑𝜃
=

2

sin 𝜃
[(𝑛 + 1)𝑃𝑛+1

(0,0)
− cos 𝜃 𝑃𝑛

(1,1)] 

(A.7) 

For Radau quadrature, the value and derivative of 𝑃𝑛
(1,0)

 or 𝑃𝑛
(0,1)

 can also be expressed in 

terms of Legendre polynomials through Eqs. (2.83) or (2.88) when it is combined with the 

recurrence relationship, Eq. (2.25), the Sturm-Liouville relationship, Eq. (2.39), and the 
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expression for the first derivative, Eq. (2.41). After some algebraic manipulation and 

conversion to θ coordinates, the following relationships are derived: 

 
𝑃𝑛

(1,0)
= 𝑃𝑛

(0,0)
−

2cos2( 𝜃
2
)

(𝑛 + 1) sin 𝜃

𝑑𝑃𝑛
(0,0)

𝑑𝜃
 

𝑑𝑃𝑛
(1,0)

𝑑𝜃
=

1

sin2(𝜃
2
)
[ 
1 + 𝑛 sin2(𝜃

2
)

𝑛 + 1

𝑑𝑃𝑛
(0,0)

𝑑𝜃
+

𝑛

2
sin 𝜃 𝑃𝑛

(0,0)
] 

𝑃𝑛
(0,1)

= 𝑃𝑛
(0,0)

+
2 sin2(𝜃

2
)

(𝑛 + 1) sin 𝜃

𝑑𝑃𝑛
(0,0)

𝑑𝜃
 

𝑑𝑃𝑛
(0,1)

𝑑𝜃
=

1

cos2( 𝜃
2
)
[ 
1 + 𝑛 cos2( 𝜃

2
)

𝑛 + 1

𝑑𝑃𝑛
(0,0)

𝑑𝜃
−

𝑛

2
sin 𝜃 𝑃𝑛

(0,0)
] 

(A.8) 

Note these formulas are consistent with the symmetry relationship, Eq. (2.10).  Eqs. (A.7) and 

(A.8) permit all the polynomials of interest to be calculated from Legendre or ultraspherical 

polynomials.  

For symmetric problems in planar and spherical geometry, the values and derivatives of the 

polynomials 𝑃𝑛

(𝛼,±1
2
)
 are needed also. These polynomials can be calculated using relationships 

for the shortcut polynomials. The equations are written in terms of x and by 𝜉 = 2𝑥2 − 1. The 

angular coordinates are related by the identity cos𝜙 = cos(2𝜃) = 2 cos2 𝜃 − 1, where 𝜉 = cos𝜙 

and 𝑥 = cos𝜃. The formulas for the shortcut polynomials and their derivatives are Eqs. (2.18), 

(2.21), (2.30) and (2.31). Converting these equations to angular coordinates produces the 

following relationships: 

  
𝑃𝑛

(𝛼,−
1
2
)
(𝜙) = 𝑃2𝑛

(𝛼,𝛼)(𝜃) 𝑎̃2𝑛⁄  

𝑑𝑃𝑛

(𝛼,−
1
2
)
(𝜙)

𝑑𝜙
=

1

2 𝑎̃2𝑛

𝑑𝑃2𝑛
(𝛼,𝛼)(𝜃)

𝑑𝜃
    

 𝑃𝑛

(𝛼,+
1
2
)
(𝜙) = 𝑃2𝑛+1

(𝛼,𝛼)(𝜃) [𝑎̃2𝑛+1 cos 𝜃]⁄   

𝑑𝑃𝑛

(𝛼,+
1
2
)
(𝜙)

𝑑𝜙
= (

1

𝑎̃2𝑛+1

𝑑𝑃2𝑛+1
(𝛼,𝛼)(𝜃)

𝑑𝜃
+ sin 𝜃 𝑃𝑛

(𝛼,+
1
2
)
(𝜙))

1

2 cos 𝜃
 

(A.9) 

Eqs. (2.18) and (2.21) define the normalizing constants. The values of interest are: 𝑎̃2𝑛 =

𝑎̃2𝑛+1 = 1 for the Gauss case, α = β = 0, and, 𝑎̃2𝑛 = (2𝑛 + 1) (𝑛 + 1)⁄  and 𝑎̃2𝑛+1 = 2 for the 

Lobatto case, α = β = 1. 

Figs. A.9 and A.10 show the accuracy of the asymptotic relationships for the Jacobi 

polynomials needed for Lobatto quadrature, i.e. α = β = 1. The asymptotic calculations all used 

quad precision (128 bit) calculations with the roots iterated to roundoff conditions. They are 

compared to the values from the recurrent relationships calculated in double precision, after 

truncation of the roots. The absolute value of Pn is plotted in Fig. A.9 and the relative error in 

the derivative is plotted in Fig. A.10. The value of Pn is the error, since zero is the correct value. 
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When n = 400, only a few terms are needed in these formulas to surpass the accuracy of 

calculations in double precision with the recurrent relations. As expected the boundary formula 

is accurate near the boundary, while the interior formula is more accurate elsewhere.  

At the roots of 𝑃𝑛
(𝛼,𝛼)

 the error in the polynomial and the relative error in its derivative using the 

interior asymptotic relationships, Eqs. (A.3) and (A.5), can be approximated by the equation: 

 
𝜖𝑛,𝑀 =

𝑔0 + 𝑔1𝑀

(𝜃𝑛𝑏)(𝑀+𝑒)
 (A.10)  

where the four parameters are listed in 

Table A.1 for θ in degrees. Figs. A.11 and 

A.12 show the excellent agreement 

between the actual errors and those 

predicted by Eq. (A.10) This equation is 

useful for determining when to use the 

interior approximation and how many 

terms to include in the expansion.  The 

equation is used by solving it for θ and substituting the product of the machine epsilon and a 

safety factor for ϵn,M. The resulting value gives the maximum θ for which the interior 

Table A.1 Error Parameters, Eq. (A.10) 
 

b e g0 g1 

𝑃𝑛
(0,0)

 1.0 1.507 6.945 8.671 

𝑑𝑃𝑛
(0,0)

𝑑𝜃⁄  1.0 0.789 -13.800 10.580 

𝑃𝑛
(1,1)

 0.9 2.527 58.440 2.500 

𝑑𝑃𝑛
(1,1)

𝑑𝜃⁄  1.0 0.900 0.000 9.621 
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approximation is accurate for a given M. The interior method with M = 3 gives accurate values 

when θ < θ* = 2.25 + 0.11n (degrees). 

For simplicity, the boundary method always uses M = 3 and for the interior method only M = 4, 

5, 7, 9 and 12 are considered. The limiting values of θ gives the range where each method is 

valid. If the valid range for interior and boundary methods do not overlap, recurrent calculations 

are used in between. Usually, the boundary method provides no improvement over recurrent 

calculations for n ≲ 40. Recurrent calculations are not needed for n ≳ 110. 

The composite procedure, just described, can also be tailored to the problem size as follows: 

• n ≤ nAsmp: the recurrence relationships are used exclusively, with all the calculations in x 

coordinates 

• nAsmp < n ≤ nIntr: only recurrent and boundary methods are used.  

• n > nIntr: a combination of recurrent, interior and boundary methods are used. 

Generally, we have found that nAsmp = nIntr = 40 works well. Table A.2 shows the number of 

points calculated with each method for various n. The row designation “M = xx” indicates the 

number of terms used in the interior method, Eqs. (A.3) and (A.5). 

Several figures have been constructed from calculations using the procedures outlined above. 

The accuracy of the calculation procedure is illustrated for 𝑃𝑛
(1,1)

 and its derivative evaluated at 

the Lobatto points. Similar or perhaps slightly better results are achieved for 𝑃𝑛
(0,0)

 at Gauss 

points. These calculations are exclusively in double precision, but use roots, x and θ, iterated 

to roundoff conditions in quad precision and then truncated to double precision. The values (or 

error) of the polynomial and relative error in its derivatives were calculated at the roots.  

For an intermediate value, n = 64, Figs. A.13 and A.14 show the errors – absolute error in 

𝑃𝑛
(1,1)

 and relative error in 𝑑𝑃𝑛
(1,1)

𝑑𝜃⁄ . Results are shown for the recurrence calculations, the 

highest order asymptotic methods considered and the composite method which used the 

combination of methods indicated in Table A.2. The boundary method cutoff value from the 

equation above is θ* = 9.3°, so the boundary method is used for only the 3 points nearest the 

boundary. The recurrence method was used for the next 6 points and the remainder of the 

calculations used the interior method with 12 or 9 terms. For this case, recurrence calculations 

Table A.2 Distribution of Methods Used 

For Calculating 𝑷𝒏
(𝟏,𝟏)

 𝐚𝐧𝐝 𝒅𝑷𝒏
(𝟏,𝟏)

𝒅𝜽⁄  

n  44 64 80 128 160 320 640 1280 2560 5120 

boundary 1 3 4 9 9 9 10 11 12 12 

recurrent 9 6 5 0 0 0 0 0 0 0 

M = 12 8 9 9 9 9 9 9 9 10 11 

M = 9 4 14 21 21 21 21 19 20 21 23 

M = 7 0 0 1 25 41 121 139 137 134 131 

M = 5 0 0 0 0 0 0 143 358 358 358 

M = 4 0 0 0 0 0 0 0 105 745 2025 
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would have worked well for all the interior points, but for some of the symmetric cases 

recurrence calculations produced larger errors near θ = 90° (x = 0). With either method, the 

error distribution is more uniform, and the maximum error is about an order of magnitude less 

than with the recurrence relationships alone. Note that for 10° < θ < 25° neither asymptotic 

approximation gives sufficient accuracy.  

Figs. A.15 and A.16 shows error calculations for a larger value, n = 128. The distribution of 

methods used is shown in Table A.2. The composite results used only asymptotic calculations, 

but the values from recurrence calculations are included for comparison. The maximum error 

with the composite calculations is 2 to 3 orders of magnitude less near the boundary and more 

uniform than the recurrence calculations.  

The approach produces consistent accuracy for quite large values of n. Note from Table A.2 

that fewer terms are needed for points further from the boundary. The calculations per node 

decreases, since fewer and fewer terms are needed in the asymptotic expansions. Even 

smaller values of M could be considered as an additional optimization. 

Radau quadrature introduces new opportunities for rounding errors, which others have not 

discussed. Due to the symmetry of the ultraspherical polynomials, only half the points need to 
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be considered, i.e. 0 < x < 1 or π/2 > θ > 0. For Radau quadrature, the Jacobi polynomials, α = 

0, β = 1 and α = 1, β = 0, are asymmetric, so the entire interval must be considered, i.e. -1 < x < 

1 or π > θ > 0. There has been much discussion about the rounding errors introduced by the 

O(n2) spacing in x near the endpoints. θ coordinates are the recommended solution for 

improved accuracy since they give a more uniform spacing of the points. However, the O(n) 

spacing can still lead to a linear error growth rate unless one is careful. Rounding errors are 

reduced not only by the spacing of the points, but also because the origin in θ coordinates is at 

the troublesome endpoint, x = 1 or θ = 0. 

Fig. A.17 shows the results of calculations with n = 256 for the two cases α = 0, β = 1 and α = 1, 

β = 0. The (0,1) case is plotted for 0° to 30° (the right end), while for the (1,0) case the left end 

from 180° to 150° is plotted in the 

opposite direction. According to 

symmetry, Eq. (2.10), the two results 

should be identical, but the rounding 

errors are different. The (0,1) 

polynomial has smaller rounding errors, 

because the region shown is near the 

origin. The (1,0) polynomials is more 

accurate at its origin, i.e. the other end. 

For larger n, the differences are greater. 

The cause of the difference is simple. 

To apply the boundary approximation 

for θ > π/2 the coordinates must be 

folded, i.e. 𝜃̌ = 𝜋 − 𝜃, utilizing Eq. (2.10) 

to produce the results. The subtraction introduces a relative error which is proportional to n. 

The more accurate results in Fig. A.17 are achieved on both ends for both polynomials if the 

subtraction is carried out in higher precision. 

We would like to avoid calculations in higher precision, since it adds complexity and that option 

is not always available. To achieve higher accuracy for asymmetric polynomials without higher 

precision, all calculations should be carried out in the folded coordinates, i.e. 𝜃̌ = 𝜋 − 𝜃 for θ > 

π/2. Eq. (2.10) is used to establish the sign. Although it is somewhat cumbersome, this 

approach has been implemented, so the more accurate results are achieved at both ends. 

Using the same approach with shortcut polynomials was found to give slightly more accurate 

roots for ultraspherical polynomials. Eqs. (A.3) and (A.5) give more accurate calculations near 

π/2 or x = 0 when rewritten in terms of π/2 – θ. 

Since the results displayed in Fig. A.8 caused us to launch off into the study of asymptotic 

methods, that problem is revisited here. Figs. A.18 and A.19 show similar results calculated 

with the composite asymptotic method. The results in Fig. A.18 are like those in Fig. A.8, 

except, the recurrent calculations are replaced with the composite calculations. The results are 

not as good as the quad precision calculations, but they are much better than the recurrent 
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calculations, reducing the maximum error by over two orders of magnitude. The results in Fig. 

A.8 and Fig. A.18 are calculated with roots from double precision recurrent calculations. Fig. 

A.19 shows the results when the composite method is also used in the root calculation. Much 

of the improvement given by the correction is due to errors in the roots. If the roots are 

calculated with more accurate asymptotic polynomial calculations, the difference between 

corrected and uncorrected results is relatively small.   
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Appendix B - Galerkin Method with Flux Boundary Conditions 

Consider a problem approximated by the following trial functions:   

 𝑦(𝑥) =  ∑ ℓ𝑖(𝑥)

𝑛+1

𝑖=0

𝑦𝑖  (B.1) 

where ℓ𝑖(𝑥) are the Lagrange interpolating polynomials. These functions are then substituted 

into the differential equation to form the residual as in Eq. (1.8).  Assume the boundary 

conditions are: 

𝑦 = 0   𝑎𝑡 𝑥 = 0 
𝑑𝑦

𝑑𝑥
+ ℎ𝑦 = 0  𝑎𝑡 𝑥 = 1   

The usual procedure in orthogonal collocation, pseudospectral or differential quadrature 

methods is to satisfy both of these conditions exactly, i.e. use boundary collocation [Finlayson 

(1972), p. 101; Villadsen and Michelsen (1978), p. 137; Bert and Malik (1996); Belomo (1997); 

Trefethen (2000), p. 137; Boyd (2000), p. 111, Peyret (2002), p. 59].  

𝑦0 = 0 

∑ 𝐴𝑛+1,𝑖𝑦𝑖  + ℎ𝑦𝑛+1 = 0𝑛+1
𝑖=0   

where A is the first derivative matrix. If the boundary values are eliminated, Eq. (B.1) becomes:  

 𝑦(𝑥) =  ∑[ℓ𝑖(𝑥) + 𝑏𝑖ℓ𝑛+1(𝑥)]

𝑛

𝑖=1

𝑦𝑖 (B.2) 

where 𝑏𝑖 = −𝐴𝑛+1,𝑖/(𝐴𝑛+1,𝑛+1 + ℎ). The trial functions are now the terms in the brackets of Eq. 

(B.2) and the Galerkin method weights the residual, R, by these trial functions. If the integrals 

are approximated by quadrature using all n + 2 collocation points, the result is: 

  ∑ 𝑊𝑘𝑅(𝑥𝑘, 𝒚)[ℓ𝑖(𝑥𝑘) + 𝑏𝑖ℓ𝑛+1(𝑥𝑘)]

𝑛+1

𝑘=0

= 𝑊𝑖𝑅(𝑥𝑖, 𝒚) + 𝑊𝑛+1𝑅(1, 𝒚)𝑏𝑖 = 0 (B.3) 

Eq. (B.3) is not equivalent to a collocation method because of the second term involving the 

residual at the boundary. Collocation sets only the first interior residual term to zero, so the 

nonzero second term seriously violates the Galerkin method. The boundary weight, Wn+1, is 

O(n2), so this inconsistency creates an error over and above that caused by the approximate 

quadrature. Numerical experiments suggest the error introduced is significant. Since the 

residual at the boundary decreases exponentially with n, the method with boundary collocation 

converges exponentially, but usually at a much slower rate, especially for fluxes. Boundary 

collocation also causes errors in the overall mass or energy balance (see Section 3.1.4). 

Boundary collocation works well with Gauss points or Radau points with Wn+1 = 0. However, 

Lobatto points usually produce greater accuracy if boundary conditions are properly treated. 
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Chebyshev points use Clenshaw-Curtis quadrature, which also has a nonzero boundary 

weight. Although it is a less accurate quadrature, boundary collocation should not be used with 

Chebyshev points either. Wn+1 for Clenshaw-Curtis quadrature is roughly half that for Lobatto 

quadrature, so the inconsistency is smaller, but still significant. 

A far better solution is to treat the boundary condition as a natural condition, so that it becomes 

part of the approximation. This approach is standard for most Galerkin applications and is 

described more fully in Section 3.1.3 and 3.1.4. The method is conservative with a natural 

treatment. The examples demonstrate that it works very well. Others have proposed similar 

alternatives to boundary collocation [Young (1977), Canuto, et al. (2006), Funaro (1992), Shen 

and Tang (2011)]; however, these methods appear not to have gained much traction. Finally 

compelling evidence for the correct treatment was presented recently [Young (2019)]. 

Mathematicians often pay little attention to the accuracy of fluxes, whereas it is one of the most 

important results for engineers, since it determines the exchange between the objects being 

modeled. 
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